A Special Family of <i>m</i>-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition

In this paper, we introduce a special family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">M</mi><msub><mi>σ</mi><mi>m&...

詳細記述

書誌詳細
主要な著者: Ibtisam Aldawish, Sondekola Rudra Swamy, Basem Aref Frasin
フォーマット: 論文
言語:English
出版事項: MDPI AG 2022-05-01
シリーズ:Fractal and Fractional
主題:
オンライン・アクセス:https://www.mdpi.com/2504-3110/6/5/271
その他の書誌記述
要約:In this paper, we introduce a special family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">M</mi><msub><mi>σ</mi><mi>m</mi></msub></msub><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>ν</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>φ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of the function family <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mi>m</mi></msub></semantics></math></inline-formula> of <i>m</i>-fold symmetric bi-univalent functions defined in the open unit disc <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">D</mi></semantics></math></inline-formula> and obtain estimates of the first two Taylor–Maclaurin coefficients for functions in the special family. Further, the Fekete–Szegö functional for functions in this special family is also estimated. The results presented in this paper not only generalize and improve some recent works, but also give new results as special cases.
ISSN:2504-3110