Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers
Usually, the main axon is assumed to faithfully conduct action potentials (APs). Recent data have indicated that neural processing can occur along the axonal path. However, the patterns and mechanisms of temporal coding are not clear. In the present study, single fiber recording was used to analyze...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2012-08-01
|
Series: | Neurosignals |
Subjects: | |
Online Access: | http://www.karger.com/Article/FullText/337350 |
_version_ | 1818949179380072448 |
---|---|
author | Zhi-Ru Zhu Yi-Hui Liu Wei-Gang Ji Jian-Hong Duan San-Jue Hu |
author_facet | Zhi-Ru Zhu Yi-Hui Liu Wei-Gang Ji Jian-Hong Duan San-Jue Hu |
author_sort | Zhi-Ru Zhu |
collection | DOAJ |
description | Usually, the main axon is assumed to faithfully conduct action potentials (APs). Recent data have indicated that neural processing can occur along the axonal path. However, the patterns and mechanisms of temporal coding are not clear. In the present study, single fiber recording was used to analyze activity-dependent modulation of AP trains in the main axons of C fibers in the rabbit saphenous nerve. Trains of 5 superthreshold electrical pulses at interstimulus intervals of 20 or 50 ms were applied to the nerve trunk for 200 s. The interspike intervals (ISIs) for these trains were compared to the input interstimulus intervals. Three basic types of C fibers were observed in response to repeated stimuli: first, the ISI between the first and second AP (ISI1-2) of type 1 was longer than the interstimulus interval; second, the ISI1-2 of type 2 showed wavelike fluctuations around the interstimulus interval, and third, the ISI1-2 of type 3 exhibited shorter intervals for a long period. Furthermore, both 4-aminopyridine-sensitive potassium and hyperpolarization-activated cation currents were involved in the modulation of ISI1-2 of train pulses. These data provide new evidence that multiple modes of neural conduction can occur along the main axons of C fibers. |
first_indexed | 2024-12-20T08:58:35Z |
format | Article |
id | doaj.art-dc9280bdd6ff475291f683950b82af0b |
institution | Directory Open Access Journal |
issn | 1424-862X 1424-8638 |
language | English |
last_indexed | 2024-12-20T08:58:35Z |
publishDate | 2012-08-01 |
publisher | Cell Physiol Biochem Press GmbH & Co KG |
record_format | Article |
series | Neurosignals |
spelling | doaj.art-dc9280bdd6ff475291f683950b82af0b2022-12-21T19:45:56ZengCell Physiol Biochem Press GmbH & Co KGNeurosignals1424-862X1424-86382012-08-01213-421322810.1159/000337350337350Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated FibersZhi-Ru ZhuYi-Hui LiuWei-Gang JiJian-Hong DuanSan-Jue HuUsually, the main axon is assumed to faithfully conduct action potentials (APs). Recent data have indicated that neural processing can occur along the axonal path. However, the patterns and mechanisms of temporal coding are not clear. In the present study, single fiber recording was used to analyze activity-dependent modulation of AP trains in the main axons of C fibers in the rabbit saphenous nerve. Trains of 5 superthreshold electrical pulses at interstimulus intervals of 20 or 50 ms were applied to the nerve trunk for 200 s. The interspike intervals (ISIs) for these trains were compared to the input interstimulus intervals. Three basic types of C fibers were observed in response to repeated stimuli: first, the ISI between the first and second AP (ISI1-2) of type 1 was longer than the interstimulus interval; second, the ISI1-2 of type 2 showed wavelike fluctuations around the interstimulus interval, and third, the ISI1-2 of type 3 exhibited shorter intervals for a long period. Furthermore, both 4-aminopyridine-sensitive potassium and hyperpolarization-activated cation currents were involved in the modulation of ISI1-2 of train pulses. These data provide new evidence that multiple modes of neural conduction can occur along the main axons of C fibers.http://www.karger.com/Article/FullText/337350Single fiber recordingC fiberInterstimulus intervalInterspike intervalConduction velocity4-AminopyridineZD7288 |
spellingShingle | Zhi-Ru Zhu Yi-Hui Liu Wei-Gang Ji Jian-Hong Duan San-Jue Hu Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers Neurosignals Single fiber recording C fiber Interstimulus interval Interspike interval Conduction velocity 4-Aminopyridine ZD7288 |
title | Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers |
title_full | Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers |
title_fullStr | Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers |
title_full_unstemmed | Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers |
title_short | Modulation of Action Potential Trains in Rabbit Saphenous Nerve Unmyelinated Fibers |
title_sort | modulation of action potential trains in rabbit saphenous nerve unmyelinated fibers |
topic | Single fiber recording C fiber Interstimulus interval Interspike interval Conduction velocity 4-Aminopyridine ZD7288 |
url | http://www.karger.com/Article/FullText/337350 |
work_keys_str_mv | AT zhiruzhu modulationofactionpotentialtrainsinrabbitsaphenousnerveunmyelinatedfibers AT yihuiliu modulationofactionpotentialtrainsinrabbitsaphenousnerveunmyelinatedfibers AT weigangji modulationofactionpotentialtrainsinrabbitsaphenousnerveunmyelinatedfibers AT jianhongduan modulationofactionpotentialtrainsinrabbitsaphenousnerveunmyelinatedfibers AT sanjuehu modulationofactionpotentialtrainsinrabbitsaphenousnerveunmyelinatedfibers |