Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction

A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables...

Full description

Bibliographic Details
Main Authors: Stephen C. Anco, Sajid Ali, Thomas Wolf
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2011-07-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2011.066
Description
Summary:A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional group of point symmetries for the reaction-diffusion equation. With this group-foliation reduction method, solutions of the reaction-diffusion equation are obtained in an explicit form, including group-invariant similarity solutions and travelling-wave solutions, as well as dynamically interesting solutions that are not invariant under any of the point symmetries admitted by this equation.
ISSN:1815-0659