Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes

Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest a...

Full description

Bibliographic Details
Main Authors: Anna Rovaletti, Luca De Gioia, Piercarlo Fantucci, Claudio Greco, Jacopo Vertemara, Giuseppe Zampella, Federica Arrigoni, Luca Bertini
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/7/6368
Description
Summary:Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
ISSN:1661-6596
1422-0067