BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION

In this paper, Bayes estimators of the unknown shape parameter of the exponentiated moment exponential distribution (EMED)have been derived by using two informative (gamma and chi-square) priors and two non-informative (Jeffrey’s and uniform) priors under different loss functions, namely, Squared Er...

Full description

Bibliographic Details
Main Authors: Kawsar Fatima, S.P Ahmad*
Format: Article
Language:English
Published: Springer 2018-06-01
Series:Journal of Statistical Theory and Applications (JSTA)
Subjects:
Online Access:https://www.atlantis-press.com/article/25898355/view
_version_ 1818006372751507456
author Kawsar Fatima
S.P Ahmad*
author_facet Kawsar Fatima
S.P Ahmad*
author_sort Kawsar Fatima
collection DOAJ
description In this paper, Bayes estimators of the unknown shape parameter of the exponentiated moment exponential distribution (EMED)have been derived by using two informative (gamma and chi-square) priors and two non-informative (Jeffrey’s and uniform) priors under different loss functions, namely, Squared Error Loss function, Entropy loss function and precautionary Loss function. The Maximum likelihood estimator (MLE) is obtained. Also, we used two real life data sets to illustrate the result derived.
first_indexed 2024-04-14T05:00:11Z
format Article
id doaj.art-dca2597d56da47e285c118415584cff5
institution Directory Open Access Journal
issn 1538-7887
language English
last_indexed 2024-04-14T05:00:11Z
publishDate 2018-06-01
publisher Springer
record_format Article
series Journal of Statistical Theory and Applications (JSTA)
spelling doaj.art-dca2597d56da47e285c118415584cff52022-12-22T02:10:59ZengSpringerJournal of Statistical Theory and Applications (JSTA)1538-78872018-06-0117210.2991/jsta.2018.17.2.13BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTIONKawsar FatimaS.P Ahmad*In this paper, Bayes estimators of the unknown shape parameter of the exponentiated moment exponential distribution (EMED)have been derived by using two informative (gamma and chi-square) priors and two non-informative (Jeffrey’s and uniform) priors under different loss functions, namely, Squared Error Loss function, Entropy loss function and precautionary Loss function. The Maximum likelihood estimator (MLE) is obtained. Also, we used two real life data sets to illustrate the result derived.https://www.atlantis-press.com/article/25898355/viewExponentiated Moment Exponential distributionMaximum Likelihood EstimatorBayesian estimationPriorsLoss functions
spellingShingle Kawsar Fatima
S.P Ahmad*
BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
Journal of Statistical Theory and Applications (JSTA)
Exponentiated Moment Exponential distribution
Maximum Likelihood Estimator
Bayesian estimation
Priors
Loss functions
title BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
title_full BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
title_fullStr BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
title_full_unstemmed BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
title_short BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
title_sort bayesian approach in estimation of shape parameter of the exponentiated moment exponential distribution
topic Exponentiated Moment Exponential distribution
Maximum Likelihood Estimator
Bayesian estimation
Priors
Loss functions
url https://www.atlantis-press.com/article/25898355/view
work_keys_str_mv AT kawsarfatima bayesianapproachinestimationofshapeparameteroftheexponentiatedmomentexponentialdistribution
AT spahmad bayesianapproachinestimationofshapeparameteroftheexponentiatedmomentexponentialdistribution