A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds

A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when...

Full description

Bibliographic Details
Main Authors: Indranil Biswas, Vamsi Pritham Pingali
Format: Article
Language:English
Published: Association Epiga 2018-09-01
Series:Épijournal de Géométrie Algébrique
Subjects:
Online Access:https://epiga.episciences.org/4209/pdf
_version_ 1811238211849027584
author Indranil Biswas
Vamsi Pritham Pingali
author_facet Indranil Biswas
Vamsi Pritham Pingali
author_sort Indranil Biswas
collection DOAJ
description A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.
first_indexed 2024-04-12T12:37:54Z
format Article
id doaj.art-dcb37114ad7e406884d42b2fb0a08d3e
institution Directory Open Access Journal
issn 2491-6765
language English
last_indexed 2024-04-12T12:37:54Z
publishDate 2018-09-01
publisher Association Epiga
record_format Article
series Épijournal de Géométrie Algébrique
spelling doaj.art-dcb37114ad7e406884d42b2fb0a08d3e2022-12-22T03:32:51ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652018-09-01Volume 210.46298/epiga.2018.volume2.42094209A characterization of finite vector bundles on Gauduchon astheno-Kahler manifoldsIndranil BiswasVamsi Pritham PingaliA vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.https://epiga.episciences.org/4209/pdfmathematics - algebraic geometrymathematics - differential geometry32l10, 53c55, 14d21
spellingShingle Indranil Biswas
Vamsi Pritham Pingali
A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
Épijournal de Géométrie Algébrique
mathematics - algebraic geometry
mathematics - differential geometry
32l10, 53c55, 14d21
title A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
title_full A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
title_fullStr A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
title_full_unstemmed A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
title_short A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds
title_sort characterization of finite vector bundles on gauduchon astheno kahler manifolds
topic mathematics - algebraic geometry
mathematics - differential geometry
32l10, 53c55, 14d21
url https://epiga.episciences.org/4209/pdf
work_keys_str_mv AT indranilbiswas acharacterizationoffinitevectorbundlesongauduchonasthenokahlermanifolds
AT vamsiprithampingali acharacterizationoffinitevectorbundlesongauduchonasthenokahlermanifolds
AT indranilbiswas characterizationoffinitevectorbundlesongauduchonasthenokahlermanifolds
AT vamsiprithampingali characterizationoffinitevectorbundlesongauduchonasthenokahlermanifolds