Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves

Despite its key role for the study and modeling of nitrogen chemistry and NO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">x</mi><...

Full description

Bibliographic Details
Main Authors: Michael Stuhr, Sebastian Hesse, Gernot Friedrichs
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Fuels
Subjects:
Online Access:https://www.mdpi.com/2673-3994/2/4/25
_version_ 1797504520349024256
author Michael Stuhr
Sebastian Hesse
Gernot Friedrichs
author_facet Michael Stuhr
Sebastian Hesse
Gernot Friedrichs
author_sort Michael Stuhr
collection DOAJ
description Despite its key role for the study and modeling of nitrogen chemistry and NO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">x</mi></msub></semantics></math></inline-formula> formation in combustion processes, HCN has only rarely been detected under high-temperature conditions. Here, we demonstrate quantitative detection of HCN behind incident and reflected shock waves using a novel sensitive single-tone mid-infrared frequency modulation (mid-IR-FM) detection scheme. The temperature-dependent pressure broadening of the P(26) line in the fundamental CH stretch vibration band was investigated in the temperature range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>670</mn><mspace width="3.33333pt"></mspace><mi mathvariant="normal">K</mi><mo>≤</mo><mi>T</mi><mo>≤</mo><mn>1460</mn><mspace width="3.33333pt"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, yielding a pressure broadening coefficient for argon of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msubsup><mi>γ</mi><mrow><mi>Ar</mi></mrow><mrow><mn>296</mn><mspace width="4.pt"></mspace><mi mathvariant="normal">K</mi></mrow></msubsup><mo>=</mo><mrow><mo>(</mo><mn>0.093</mn><mo>±</mo><mn>0.007</mn><mo>)</mo></mrow><mspace width="3.33333pt"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>atm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and a temperature exponent of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi>Ar</mi></msub><mo>=</mo><mn>0.67</mn><mo>±</mo><mn>0.07</mn></mrow></semantics></math></inline-formula>. The sensitivity of the detection scheme was characterized by means of an Allan analysis, showing that HCN detection on the ppm mixing ratio level is possible at typical shock wave conditions. In order to demonstrate the capability of mid-IR-FM spectroscopy for future high-temperature reaction kinetic studies, we also report the first successful measurement of a reactive HCN decay profile induced by its reaction with oxygen atoms.
first_indexed 2024-03-10T04:05:45Z
format Article
id doaj.art-dcc34f7e715245948ac0a7bedd181bdb
institution Directory Open Access Journal
issn 2673-3994
language English
last_indexed 2024-03-10T04:05:45Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Fuels
spelling doaj.art-dcc34f7e715245948ac0a7bedd181bdb2023-11-23T08:24:52ZengMDPI AGFuels2673-39942021-10-012443744710.3390/fuels2040025Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock WavesMichael Stuhr0Sebastian Hesse1Gernot Friedrichs2Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 1, 24118 Kiel, GermanyInstitut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 1, 24118 Kiel, GermanyInstitut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 1, 24118 Kiel, GermanyDespite its key role for the study and modeling of nitrogen chemistry and NO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi mathvariant="normal">x</mi></msub></semantics></math></inline-formula> formation in combustion processes, HCN has only rarely been detected under high-temperature conditions. Here, we demonstrate quantitative detection of HCN behind incident and reflected shock waves using a novel sensitive single-tone mid-infrared frequency modulation (mid-IR-FM) detection scheme. The temperature-dependent pressure broadening of the P(26) line in the fundamental CH stretch vibration band was investigated in the temperature range <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>670</mn><mspace width="3.33333pt"></mspace><mi mathvariant="normal">K</mi><mo>≤</mo><mi>T</mi><mo>≤</mo><mn>1460</mn><mspace width="3.33333pt"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, yielding a pressure broadening coefficient for argon of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><msubsup><mi>γ</mi><mrow><mi>Ar</mi></mrow><mrow><mn>296</mn><mspace width="4.pt"></mspace><mi mathvariant="normal">K</mi></mrow></msubsup><mo>=</mo><mrow><mo>(</mo><mn>0.093</mn><mo>±</mo><mn>0.007</mn><mo>)</mo></mrow><mspace width="3.33333pt"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>atm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and a temperature exponent of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>n</mi><mi>Ar</mi></msub><mo>=</mo><mn>0.67</mn><mo>±</mo><mn>0.07</mn></mrow></semantics></math></inline-formula>. The sensitivity of the detection scheme was characterized by means of an Allan analysis, showing that HCN detection on the ppm mixing ratio level is possible at typical shock wave conditions. In order to demonstrate the capability of mid-IR-FM spectroscopy for future high-temperature reaction kinetic studies, we also report the first successful measurement of a reactive HCN decay profile induced by its reaction with oxygen atoms.https://www.mdpi.com/2673-3994/2/4/25mid-infrared frequency modulation spectroscopyshock wavescombustion diagnosticshigh-temperature detectionhydrogen cyanidepressure broadening
spellingShingle Michael Stuhr
Sebastian Hesse
Gernot Friedrichs
Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
Fuels
mid-infrared frequency modulation spectroscopy
shock waves
combustion diagnostics
high-temperature detection
hydrogen cyanide
pressure broadening
title Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
title_full Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
title_fullStr Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
title_full_unstemmed Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
title_short Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves
title_sort quantitative and sensitive mid infrared frequency modulation detection of hcn behind shock waves
topic mid-infrared frequency modulation spectroscopy
shock waves
combustion diagnostics
high-temperature detection
hydrogen cyanide
pressure broadening
url https://www.mdpi.com/2673-3994/2/4/25
work_keys_str_mv AT michaelstuhr quantitativeandsensitivemidinfraredfrequencymodulationdetectionofhcnbehindshockwaves
AT sebastianhesse quantitativeandsensitivemidinfraredfrequencymodulationdetectionofhcnbehindshockwaves
AT gernotfriedrichs quantitativeandsensitivemidinfraredfrequencymodulationdetectionofhcnbehindshockwaves