Cryopreserved Human Natural Killer Cells Exhibit Potent Antitumor Efficacy against Orthotopic Pancreatic Cancer through Efficient Tumor-Homing and Cytolytic Ability (Running Title: Cryopreserved NK Cells Exhibit Antitumor Effect)

Pancreatic cancer is known to be highly aggressive, and desmoplasia-induced accumulation of extracellular matrix (ECM), which is a hallmark of many pancreatic cancers, severely restricts the therapeutic efficacy of both immunotherapeutics and conventional chemotherapeutics due to the ECM functioning...

Full description

Bibliographic Details
Main Authors: Eonju Oh, Bokyung Min, Yan Li, ChunYing Lian, JinWoo Hong, Gyeong-min Park, Bitna Yang, Sung Yoo Cho, Yu Kyeong Hwang, Chae-Ok Yun
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/11/7/966
Description
Summary:Pancreatic cancer is known to be highly aggressive, and desmoplasia-induced accumulation of extracellular matrix (ECM), which is a hallmark of many pancreatic cancers, severely restricts the therapeutic efficacy of both immunotherapeutics and conventional chemotherapeutics due to the ECM functioning as a major physical barrier against permeation and penetration. In the case of cell-based immunotherapeutics, there are several other bottlenecks preventing translation into clinical use due to their biological nature; for example, poor availability of cell therapeutic in a readily usable form due to difficulties in production, handling, shipping, and storage. To address these challenges, we have isolated allogeneic natural killer (NK) cells from healthy donors and expanded them <i>in vitro</i> to generate cryopreserved stocks. These cryopreserved NK cells were thawed to evaluate their therapeutic efficacy against desmoplastic pancreatic tumors, ultimately aiming to develop a readily accessible and mass-producible off-the-shelf cell-based immunotherapeutic. The cultured NK cells post-thawing retained highly pure populations of activated NK cells that expressed various activating receptors and a chemokine receptor. Furthermore, systemic administration of NK cells induced greater <i>in vivo</i> tumor growth suppression when compared with gemcitabine, which is the standard chemotherapeutic used for pancreatic cancer treatment. The potent antitumor effect of NK cells was mediated by efficient tumor-homing ability and infiltration into desmoplastic tumor tissues. Moreover, the infiltration of NK cells led to strong induction of apoptosis, elevated expression of the antitumor cytokine interferon (IFN)-&#947;, and inhibited expression of the immunosuppressive transforming growth factor (TGF)-&#946; in tumor tissues. Expanded and cryopreserved NK cells are strong candidates for future cell-mediated systemic immunotherapy against pancreatic cancer.
ISSN:2072-6694