Summary: | Surface electromyography (sEMG) is generally used to measure muscles’ activity. The sEMG signal can be affected using several factors and vary among individuals and even measurement trials. Thus, to consistently evaluate data among individuals and trials, the maximum voluntary contraction (MVC) value is usually calculated and used to normalize sEMG signals. However, the sEMG amplitude collected from low back muscles can be frequently larger than that found when conventional MVC measurement procedures are used. To address this limitation, in this study, we proposed a new dynamic MVC measurement procedure for low back muscles. Inspired by weightlifting, we designed a detailed dynamic MVC procedure, and then collected data from 10 able-bodied participants and compared their performances using several conventional MVC procedures by normalizing the sEMG amplitude for the same test. The sEMG amplitude normalized by our dynamic MVC procedure showed a much lower value than those obtained using other procedures (Wilcoxon signed-rank test, with <i>p</i> < 0.05), indicating that the sEMG collected during dynamic MVC procedure had a larger amplitude than those of conventional MVC procedures. Therefore, our proposed dynamic MVC obtained sEMG amplitudes closer to its physiological maximum value and is thus more capable of normalizing the sEMG amplitude for low back muscles.
|