Modeling of Blockchain Assisted Intrusion Detection on IoT Healthcare System Using Ant Lion Optimizer With Hybrid Deep Learning

An IoT healthcare system refers to the use of Internet of Things (IoT) devices and technologies in the healthcare industry. It involves the integration of various interconnected devices, sensors, and systems to collect, monitor, and transmit health-related data for medical purposes. Blockchain-assis...

Full description

Bibliographic Details
Main Authors: Hayam Alamro, Radwa Marzouk, Nuha Alruwais, Noha Negm, Sumayh S. Aljameel, Majdi Khalid, Manar Ahmed Hamza, Mohamed Ibrahim Alsaid
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10196386/
Description
Summary:An IoT healthcare system refers to the use of Internet of Things (IoT) devices and technologies in the healthcare industry. It involves the integration of various interconnected devices, sensors, and systems to collect, monitor, and transmit health-related data for medical purposes. Blockchain-assisted intrusion detection on IoT healthcare systems is an innovative approach to enhancing the security and privacy of sensitive medical data. By combining the decentralized and immutable nature of blockchain technology with intrusion detection systems (IDS), it is possible to create a more robust and trustworthy security framework for IoT healthcare systems. With this motivation, this study presents Blockchain Assisted IoT Healthcare System using Ant Lion Optimizer with Hybrid Deep Learning (BHS-ALOHDL) technique. The presented BHS-ALOHDL technique enables IoT devices in the healthcare sector to transmit medical data securely and detects intrusions in the system. To accomplish this, the BHS-ALOHDL technique performs ALO based feature subset selection (ALO-FSS) system to produce a series of feature vectors. The HDL model integrates convolutional neural network (CNN) features and long short-term memory (LSTM) model for intrusion detection. Lastly, the flower pollination algorithm (FPA) is exploited for the optimal hyperparameter tuning of the HDL approach, which results in an enhanced detection rate. The experimental outcome of the BHS-ALOHDL system was tested on two benchmark datasets and the outcomes indicate the promising performance of the BHS-ALOHDL technique over other models.
ISSN:2169-3536