An international challenge to use artificial intelligence to define the state of the art in kidney and kidney tumor segmentation in CT imaging
Main Authors: | N. Heller, S.T. Mc Sweeney, M.T. Peterson, S. Peterson, J. Rickman, B. Stai, R. Tejpaul, M. Oestreich, P. Blake, J. Rosenberg, K. Moore, W. Edward, Z. Rengel, Z. Edgerton, R. Vasdev, A. Kalapara, N.J. Sathianathen, N. Papanikolopoulos, C.J. Weight |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-07-01
|
Series: | European Urology Open Science |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666168320330767 |
Similar Items
-
Automatic Segmentation of Kidneys and Kidney Tumors: The KiTS19 International Challenge
by: Niranjan J. Sathianathen, et al.
Published: (2022-01-01) -
Coarse texture in contrast-enhanced CT as a predictor of renal tumor subtype and grade
by: N. Heller, et al.
Published: (2020-07-01) -
Predictors of clinically significant disease on systematic cores only in magnetic resonance imaging-guided prostate biopsy
by: A. Kalapara, et al.
Published: (2020-07-01) -
Predictors of negative targeted prostate biopsy despite PIRADS 4-5 lesions on multiparametric magnetic resonance imaging
by: A. Kalapara, et al.
Published: (2020-07-01) -
Trans-retro partial nephrectomy: A novel approach for posterior kidney tumors
by: Subodh K. Regmi, et al.
Published: (2019-03-01)