Hopf bifurcation in an age-structured prey-predator model with Holling Ⅲ response function

In this paper, we propose a prey-predator model with age structure which is described by the mature period. The aim of this paper is to study how mature period affect the dynamics of interaction between prey and predator. The sufficient condition of the existence of non-negative steady state is deri...

Full description

Bibliographic Details
Main Authors: Lijun Wang, Chuanjun Dai, Min Zhao
Format: Article
Language:English
Published: AIMS Press 2021-04-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2021156
Description
Summary:In this paper, we propose a prey-predator model with age structure which is described by the mature period. The aim of this paper is to study how mature period affect the dynamics of interaction between prey and predator. The sufficient condition of the existence of non-negative steady state is derived. By using integrated semigroup theory, we obtain the characteristic equation, by which we find that the non-negative steady state will lose its stability via Hopf bifurcation induced by mature period, and the corresponding periodic solutions emerge. Additionally, some numerical simulations are provided to illustrate the results predicted by linear analysis. Especially, the numerical results indicate that both mature period and age can affect the amplitude and period of periodic solutions.
ISSN:1551-0018