Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review

Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful in...

Full description

Bibliographic Details
Main Authors: Smiksha Munjral, Mahesh Maindarkar, Puneet Ahluwalia, Anudeep Puvvula, Ankush Jamthikar, Tanay Jujaray, Neha Suri, Sudip Paul, Rajesh Pathak, Luca Saba, Renoh Johnson Chalakkal, Suneet Gupta, Gavino Faa, Inder M. Singh, Paramjit S. Chadha, Monika Turk, Amer M. Johri, Narendra N. Khanna, Klaudija Viskovic, Sophie Mavrogeni, John R. Laird, Gyan Pareek, Martin Miner, David W. Sobel, Antonella Balestrieri, Petros P. Sfikakis, George Tsoulfas, Athanasios Protogerou, Durga Prasanna Misra, Vikas Agarwal, George D. Kitas, Raghu Kolluri, Jagjit Teji, Mustafa Al-Maini, Surinder K. Dhanjil, Meyypan Sockalingam, Ajit Saxena, Aditya Sharma, Vijay Rathore, Mostafa Fatemi, Azra Alizad, Vijay Viswanathan, Padukode R. Krishnan, Tomaz Omerzu, Subbaram Naidu, Andrew Nicolaides, Mostafa M. Fouda, Jasjit S. Suri
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/5/1234
_version_ 1797500470105735168
author Smiksha Munjral
Mahesh Maindarkar
Puneet Ahluwalia
Anudeep Puvvula
Ankush Jamthikar
Tanay Jujaray
Neha Suri
Sudip Paul
Rajesh Pathak
Luca Saba
Renoh Johnson Chalakkal
Suneet Gupta
Gavino Faa
Inder M. Singh
Paramjit S. Chadha
Monika Turk
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Raghu Kolluri
Jagjit Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Meyypan Sockalingam
Ajit Saxena
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Vijay Viswanathan
Padukode R. Krishnan
Tomaz Omerzu
Subbaram Naidu
Andrew Nicolaides
Mostafa M. Fouda
Jasjit S. Suri
author_facet Smiksha Munjral
Mahesh Maindarkar
Puneet Ahluwalia
Anudeep Puvvula
Ankush Jamthikar
Tanay Jujaray
Neha Suri
Sudip Paul
Rajesh Pathak
Luca Saba
Renoh Johnson Chalakkal
Suneet Gupta
Gavino Faa
Inder M. Singh
Paramjit S. Chadha
Monika Turk
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Raghu Kolluri
Jagjit Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Meyypan Sockalingam
Ajit Saxena
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Vijay Viswanathan
Padukode R. Krishnan
Tomaz Omerzu
Subbaram Naidu
Andrew Nicolaides
Mostafa M. Fouda
Jasjit S. Suri
author_sort Smiksha Munjral
collection DOAJ
description Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
first_indexed 2024-03-10T03:02:22Z
format Article
id doaj.art-dd12e56f7b724a3aad0ef2bd06bac56e
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-10T03:02:22Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-dd12e56f7b724a3aad0ef2bd06bac56e2023-11-23T10:41:16ZengMDPI AGDiagnostics2075-44182022-05-01125123410.3390/diagnostics12051234Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative ReviewSmiksha Munjral0Mahesh Maindarkar1Puneet Ahluwalia2Anudeep Puvvula3Ankush Jamthikar4Tanay Jujaray5Neha Suri6Sudip Paul7Rajesh Pathak8Luca Saba9Renoh Johnson Chalakkal10Suneet Gupta11Gavino Faa12Inder M. Singh13Paramjit S. Chadha14Monika Turk15Amer M. Johri16Narendra N. Khanna17Klaudija Viskovic18Sophie Mavrogeni19John R. Laird20Gyan Pareek21Martin Miner22David W. Sobel23Antonella Balestrieri24Petros P. Sfikakis25George Tsoulfas26Athanasios Protogerou27Durga Prasanna Misra28Vikas Agarwal29George D. Kitas30Raghu Kolluri31Jagjit Teji32Mustafa Al-Maini33Surinder K. Dhanjil34Meyypan Sockalingam35Ajit Saxena36Aditya Sharma37Vijay Rathore38Mostafa Fatemi39Azra Alizad40Vijay Viswanathan41Padukode R. Krishnan42Tomaz Omerzu43Subbaram Naidu44Andrew Nicolaides45Mostafa M. Fouda46Jasjit S. Suri47Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAMax Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, IndiaStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAMira Loma High School, Sacramento, CA 95821, USADepartment of Biomedical Engineering, North Eastern Hill University, Shillong 793022, IndiaDepartment of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, IndiaDepartment of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, ItalyoDocs Eye Care Research Laboratory, Dunedin 9013, New ZealandCSE Department, Bennett University, Greater Noida 201310, IndiaDepartment of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, ItalyStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAThe Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, GermanyDepartment of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, CanadaDepartment of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, IndiaDepartment of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, CroatiaCardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, GreeceHeart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USAMinimally Invasive Urology Institute, Brown University, Providence, RI 02912, USAMen’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USARheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, GreeceDepartment of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, ItalyRheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, GreeceDepartment of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, GreeceCardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, GreeceDepartment of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, IndiaAcademic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UKOhioHealth Heart and Vascular, Columbus, OH 43214, USAAnn and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USAAllergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, CanadaStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USAMV Centre of Diabetes, Chennai 600013, IndiaDepartment of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, IndiaDivision of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USANephrology Department, Kaiser Permanente, Sacramento, CA 95119, USADepartment of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USADepartment of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USAMV Hospital for Diabetes and Professor MVD Research Centre, Chennai 600013, IndiaNeurology Department, Fortis Hospital, Bangalore 560076, IndiaDepartment of Neurology, University Medical Centre Maribor, 1262 Maribor, SloveniaElectrical Engineering Department, University of Minnesota, Duluth, MN 55812, USAVascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, CyprusDepartment of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USAStroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USADiabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.https://www.mdpi.com/2075-4418/12/5/1234diabetic retinopathyatherosclerosiscardiovascular diseasesurrogate biomarkersartificial intelligencerisk stratification
spellingShingle Smiksha Munjral
Mahesh Maindarkar
Puneet Ahluwalia
Anudeep Puvvula
Ankush Jamthikar
Tanay Jujaray
Neha Suri
Sudip Paul
Rajesh Pathak
Luca Saba
Renoh Johnson Chalakkal
Suneet Gupta
Gavino Faa
Inder M. Singh
Paramjit S. Chadha
Monika Turk
Amer M. Johri
Narendra N. Khanna
Klaudija Viskovic
Sophie Mavrogeni
John R. Laird
Gyan Pareek
Martin Miner
David W. Sobel
Antonella Balestrieri
Petros P. Sfikakis
George Tsoulfas
Athanasios Protogerou
Durga Prasanna Misra
Vikas Agarwal
George D. Kitas
Raghu Kolluri
Jagjit Teji
Mustafa Al-Maini
Surinder K. Dhanjil
Meyypan Sockalingam
Ajit Saxena
Aditya Sharma
Vijay Rathore
Mostafa Fatemi
Azra Alizad
Vijay Viswanathan
Padukode R. Krishnan
Tomaz Omerzu
Subbaram Naidu
Andrew Nicolaides
Mostafa M. Fouda
Jasjit S. Suri
Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
Diagnostics
diabetic retinopathy
atherosclerosis
cardiovascular disease
surrogate biomarkers
artificial intelligence
risk stratification
title Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_full Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_fullStr Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_full_unstemmed Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_short Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review
title_sort cardiovascular risk stratification in diabetic retinopathy via atherosclerotic pathway in covid 19 non covid 19 frameworks using artificial intelligence paradigm a narrative review
topic diabetic retinopathy
atherosclerosis
cardiovascular disease
surrogate biomarkers
artificial intelligence
risk stratification
url https://www.mdpi.com/2075-4418/12/5/1234
work_keys_str_mv AT smikshamunjral cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT maheshmaindarkar cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT puneetahluwalia cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT anudeeppuvvula cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT ankushjamthikar cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT tanayjujaray cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT nehasuri cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sudippaul cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT rajeshpathak cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT lucasaba cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT renohjohnsonchalakkal cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT suneetgupta cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT gavinofaa cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT indermsingh cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT paramjitschadha cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT monikaturk cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT amermjohri cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT narendrankhanna cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT klaudijaviskovic cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT sophiemavrogeni cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT johnrlaird cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT gyanpareek cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT martinminer cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT davidwsobel cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT antonellabalestrieri cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT petrospsfikakis cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT georgetsoulfas cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT athanasiosprotogerou cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT durgaprasannamisra cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT vikasagarwal cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT georgedkitas cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT raghukolluri cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT jagjitteji cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT mustafaalmaini cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT surinderkdhanjil cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT meyypansockalingam cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT ajitsaxena cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT adityasharma cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT vijayrathore cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT mostafafatemi cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT azraalizad cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT vijayviswanathan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT padukoderkrishnan cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT tomazomerzu cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT subbaramnaidu cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT andrewnicolaides cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT mostafamfouda cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview
AT jasjitssuri cardiovascularriskstratificationindiabeticretinopathyviaatheroscleroticpathwayincovid19noncovid19frameworksusingartificialintelligenceparadigmanarrativereview