Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China

Abstract Sulige gas field is the largest natural gas producing area in China. Due to the “water blocking” effect, the gas–water layer significantly influences the development of gas reservoirs. The existence of low‐resistivity gas layers in the He 8 member of the Shihezi Formation in the southwester...

Full description

Bibliographic Details
Main Authors: Zhen Yang, Xiaoli Zhang, Junhui Lu, Yajun Li
Format: Article
Language:English
Published: Wiley 2022-08-01
Series:Energy Science & Engineering
Subjects:
Online Access:https://doi.org/10.1002/ese3.1212
_version_ 1811341746907381760
author Zhen Yang
Xiaoli Zhang
Junhui Lu
Yajun Li
author_facet Zhen Yang
Xiaoli Zhang
Junhui Lu
Yajun Li
author_sort Zhen Yang
collection DOAJ
description Abstract Sulige gas field is the largest natural gas producing area in China. Due to the “water blocking” effect, the gas–water layer significantly influences the development of gas reservoirs. The existence of low‐resistivity gas layers in the He 8 member of the Shihezi Formation in the southwestern Sulige gas field makes it challenging to distinguish the gas layers from the gas–water layers using conventional identification methods. To effectively identify the low‐resistivity gas layers, their genetic mechanisms are analyzed by studying their lithology and pore structural characteristics based on the well logging and core experimental data. The low‐resistivity gas layers are main affected by three causes: (1) electrical conductivity of argillaceous laminae in sandstone, (2) additional conductivity of clay minerals, and (3) high bound water saturation caused by the development of micropores and clay minerals in sandstone. Herein, to effectively distinguish the low‐resistivity gas layer from the gas–water layer based on the genetic mechanism of the low‐resistivity gas layer, first, a gas‐bearing index was constructed to characterize the gas‐bearing properties of the reservoir using the neutron logging and density logging curves after eliminating the influence of the dispersed shale. Second, a model to calculate the bound water saturation was constructed by selecting sensitive parameters with respect to the causes of bound water. Then, two plots, namely the gas‐bearing index–natural gamma relative value cross‐plot and the bound water content–porosity cross‐plots, were constructed using the gas testing data, and the identification standard of the low‐resistivity gas and gas–water layers was established. The interactive identification of the two cross‐plots effectively distinguished the low‐resistivity gas layer from the gas‐water layer, thereby providing a basis for understanding the distribution of gas and water in the southwestern Sulige gas field, which may guide further exploration and the deployment of the development well pattern.
first_indexed 2024-04-13T18:59:37Z
format Article
id doaj.art-dd14b2eec9d04991918dc757d7b70273
institution Directory Open Access Journal
issn 2050-0505
language English
last_indexed 2024-04-13T18:59:37Z
publishDate 2022-08-01
publisher Wiley
record_format Article
series Energy Science & Engineering
spelling doaj.art-dd14b2eec9d04991918dc757d7b702732022-12-22T02:34:09ZengWileyEnergy Science & Engineering2050-05052022-08-011082580259210.1002/ese3.1212Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in ChinaZhen Yang0Xiaoli Zhang1Junhui Lu2Yajun Li3Department of Geology, National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, State Key Laboratory of Continental Dynamics Northwest University Xi'an Shaanxi ChinaDepartment of Geology, National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, State Key Laboratory of Continental Dynamics Northwest University Xi'an Shaanxi ChinaDepartment of Geology, National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, State Key Laboratory of Continental Dynamics Northwest University Xi'an Shaanxi ChinaDepartment of Geology, National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology, State Key Laboratory of Continental Dynamics Northwest University Xi'an Shaanxi ChinaAbstract Sulige gas field is the largest natural gas producing area in China. Due to the “water blocking” effect, the gas–water layer significantly influences the development of gas reservoirs. The existence of low‐resistivity gas layers in the He 8 member of the Shihezi Formation in the southwestern Sulige gas field makes it challenging to distinguish the gas layers from the gas–water layers using conventional identification methods. To effectively identify the low‐resistivity gas layers, their genetic mechanisms are analyzed by studying their lithology and pore structural characteristics based on the well logging and core experimental data. The low‐resistivity gas layers are main affected by three causes: (1) electrical conductivity of argillaceous laminae in sandstone, (2) additional conductivity of clay minerals, and (3) high bound water saturation caused by the development of micropores and clay minerals in sandstone. Herein, to effectively distinguish the low‐resistivity gas layer from the gas–water layer based on the genetic mechanism of the low‐resistivity gas layer, first, a gas‐bearing index was constructed to characterize the gas‐bearing properties of the reservoir using the neutron logging and density logging curves after eliminating the influence of the dispersed shale. Second, a model to calculate the bound water saturation was constructed by selecting sensitive parameters with respect to the causes of bound water. Then, two plots, namely the gas‐bearing index–natural gamma relative value cross‐plot and the bound water content–porosity cross‐plots, were constructed using the gas testing data, and the identification standard of the low‐resistivity gas and gas–water layers was established. The interactive identification of the two cross‐plots effectively distinguished the low‐resistivity gas layer from the gas‐water layer, thereby providing a basis for understanding the distribution of gas and water in the southwestern Sulige gas field, which may guide further exploration and the deployment of the development well pattern.https://doi.org/10.1002/ese3.1212bound water saturationgas layer identificationlow‐resistivity gas reservoirpore structureshale distribution formsSouthwestern Sulige gas field
spellingShingle Zhen Yang
Xiaoli Zhang
Junhui Lu
Yajun Li
Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
Energy Science & Engineering
bound water saturation
gas layer identification
low‐resistivity gas reservoir
pore structure
shale distribution forms
Southwestern Sulige gas field
title Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
title_full Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
title_fullStr Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
title_full_unstemmed Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
title_short Genetic analysis and identification of low‐resistivity gas reservoirs of southwestern Sulige gas field in China
title_sort genetic analysis and identification of low resistivity gas reservoirs of southwestern sulige gas field in china
topic bound water saturation
gas layer identification
low‐resistivity gas reservoir
pore structure
shale distribution forms
Southwestern Sulige gas field
url https://doi.org/10.1002/ese3.1212
work_keys_str_mv AT zhenyang geneticanalysisandidentificationoflowresistivitygasreservoirsofsouthwesternsuligegasfieldinchina
AT xiaolizhang geneticanalysisandidentificationoflowresistivitygasreservoirsofsouthwesternsuligegasfieldinchina
AT junhuilu geneticanalysisandidentificationoflowresistivitygasreservoirsofsouthwesternsuligegasfieldinchina
AT yajunli geneticanalysisandidentificationoflowresistivitygasreservoirsofsouthwesternsuligegasfieldinchina