Regional variations in life cycle greenhouse gas emissions of canola‐derived jet fuel produced in western Canada
Abstract This study investigates the life cycle GHG emissions of jet fuel produced via the hydroprocessed esters and fatty acids (HEFA) pathway from canola grown in western Canada, with a focus on characterizing regional influences on emissions. We examine the effects of geographic variations in soi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-10-01
|
Series: | GCB Bioenergy |
Subjects: | |
Online Access: | https://doi.org/10.1111/gcbb.12735 |
Summary: | Abstract This study investigates the life cycle GHG emissions of jet fuel produced via the hydroprocessed esters and fatty acids (HEFA) pathway from canola grown in western Canada, with a focus on characterizing regional influences on emissions. We examine the effects of geographic variations in soil type, agricultural inputs, farming practices, and direct land use changes on life cycle GHG emissions. We utilize GREET 2016 but replace default feedstock production inputs with geographically representative data for canola production across eight western Canadian regions (representing 99% of Canada's canola production) and replace the default conversion process with data from a novel process model previously developed in ASPEN in our research group wherein oil extraction is integrated with the HEFA‐based fuel production process. Although canola production inputs and yields vary across the regions, resulting life cycle GHG emissions are similar if effects of land use and land management changes (LMC) are not included; 44–48 g CO2e/MJ for the eight regions (45%–50% reduction compared to petroleum jet fuel). Results are considerably more variable, 16–58 g CO2e/MJ, when including effects of land use and LMC directly related to conversion of lands from other uses to canola production (34%–82% reduction compared to petroleum jet fuel). We establish the main sources of emissions in the life cycle of canola jet fuel (N‐fertilizer and related emissions, fuel production), identify that substantially higher emissions may occur when using feedstock sourced from regions where conversion of forested land to cropland had occurred, and identify benefits of less intense tillage practices and increased use of summerfallow land. The methods and findings are relevant in jurisdictions internationally that are incorporating GHG emissions reductions from aviation fuels in a low carbon fuel market or legislating carbon intensity reduction requirements. |
---|---|
ISSN: | 1757-1693 1757-1707 |