Some results of η-Ricci solitons on (LCS)n-manifolds
In this paper, we consider an η -Ricci soliton on the (LCS)n-manifolds (M, φ , ξ , η , g) satisfying certain curvature conditions likes: R(ξ , X) · S= 0 and W 2(ξ, X) · S=0. We show that on the (LCS)n-manifolds (M,φ ,ξ ,η ,g), the existence of η -Ricci soliton implies that (M, g) is a quasi-Einstein...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University Constantin Brancusi of Targu-Jiu
2018-12-01
|
Series: | Surveys in Mathematics and its Applications |
Subjects: | |
Online Access: | http://www.utgjiu.ro/math/sma/v13/p13_14.pdf |
_version_ | 1823987833000427520 |
---|---|
author | S. K. Yadav S. K. Chaubey D. L. Suthar |
author_facet | S. K. Yadav S. K. Chaubey D. L. Suthar |
author_sort | S. K. Yadav |
collection | DOAJ |
description | In this paper, we consider an η -Ricci soliton on the (LCS)n-manifolds (M, φ , ξ , η , g) satisfying certain curvature conditions likes: R(ξ , X) · S= 0 and W 2(ξ, X) · S=0. We show that on the (LCS)n-manifolds (M,φ ,ξ ,η ,g), the existence of η -Ricci soliton implies that (M, g) is a quasi-Einstein. Further, we discuss the existence of Ricci solitons with the potential vector field ξ. In the end, we construct the non-trivial examples of η -Ricci solitons on the (LCS)n-manifolds. |
first_indexed | 2024-12-18T13:34:30Z |
format | Article |
id | doaj.art-dd345449ff6948fbba4e573d41752a42 |
institution | Directory Open Access Journal |
issn | 1843-7265 1842-6298 |
language | English |
last_indexed | 2024-12-18T13:34:30Z |
publishDate | 2018-12-01 |
publisher | University Constantin Brancusi of Targu-Jiu |
record_format | Article |
series | Surveys in Mathematics and its Applications |
spelling | doaj.art-dd345449ff6948fbba4e573d41752a422022-12-21T21:06:05ZengUniversity Constantin Brancusi of Targu-JiuSurveys in Mathematics and its Applications1843-72651842-62982018-12-0113 (2018)237250Some results of η-Ricci solitons on (LCS)n-manifoldsS. K. Yadav0S. K. Chaubey1D. L. Suthar2Department of Mathematics, Poornima College of Engineering, Jaipur, 302022, Rajasthan, India.Section of Mathematics, Department of Information Technology, Shinas College of Technology, Oman.Department of Mathematics, Wollo University, P. O. Box: 1145, Dessie, South Wollo, Ethopia.In this paper, we consider an η -Ricci soliton on the (LCS)n-manifolds (M, φ , ξ , η , g) satisfying certain curvature conditions likes: R(ξ , X) · S= 0 and W 2(ξ, X) · S=0. We show that on the (LCS)n-manifolds (M,φ ,ξ ,η ,g), the existence of η -Ricci soliton implies that (M, g) is a quasi-Einstein. Further, we discuss the existence of Ricci solitons with the potential vector field ξ. In the end, we construct the non-trivial examples of η -Ricci solitons on the (LCS)n-manifolds.http://www.utgjiu.ro/math/sma/v13/p13_14.pdfη -Ricci soliton; Quasi-Einsteinη -Ricci solitonQuasi-Einstein(LCS)n-manifoldRicci tensorsCurvature tensors |
spellingShingle | S. K. Yadav S. K. Chaubey D. L. Suthar Some results of η-Ricci solitons on (LCS)n-manifolds Surveys in Mathematics and its Applications η -Ricci soliton; Quasi-Einstein η -Ricci soliton Quasi-Einstein (LCS)n-manifold Ricci tensors Curvature tensors |
title | Some results of η-Ricci solitons on (LCS)n-manifolds |
title_full | Some results of η-Ricci solitons on (LCS)n-manifolds |
title_fullStr | Some results of η-Ricci solitons on (LCS)n-manifolds |
title_full_unstemmed | Some results of η-Ricci solitons on (LCS)n-manifolds |
title_short | Some results of η-Ricci solitons on (LCS)n-manifolds |
title_sort | some results of η ricci solitons on lcs n manifolds |
topic | η -Ricci soliton; Quasi-Einstein η -Ricci soliton Quasi-Einstein (LCS)n-manifold Ricci tensors Curvature tensors |
url | http://www.utgjiu.ro/math/sma/v13/p13_14.pdf |
work_keys_str_mv | AT skyadav someresultsofēriccisolitonsonlcsnmanifolds AT skchaubey someresultsofēriccisolitonsonlcsnmanifolds AT dlsuthar someresultsofēriccisolitonsonlcsnmanifolds |