Summary: | Recent literature on this topic highlights the significance of adding malononitrile moiety and halogen substituents to the squaraine scaffold to create redshifted fluorophores into the near-infrared optical region. Herein, a redshifted hydrophobic squaraine dye is synthesized via a three-step pathway. The reported dye is characterized by spectroscopic techniques, such as <sup>1</sup>H NMR, <sup>19</sup>F NMR, <sup>13</sup>C NMR, and high-resolution mass spectroscopy. Optical properties are also reported using absorbance and fluorescence studies. The hydrophobicity of the dye was studied with absorbance and fluorescence spectroscopy in water–methanol mixtures and showed J-aggregates as the water concentration increased. Density functional theory calculations were conducted to assess its electron delocalization as well as observe the three-dimensional geometry of the dye as a result of the dicyanomethylene modification and the two bulky phenyl groups.
|