A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory

Scheduling jobs within a cloud environment is a critical area of research that necessitates meticulous analysis. It entails the challenge of optimally assigning jobs to various cloud servers, each with different capabilities, and is classified as a non-deterministic polynomial (NP) problem. Many con...

Full description

Bibliographic Details
Main Authors: Mustafa Ibrahim Khaleel, Mejdl Safran, Sultan Alfarhood, Michelle Zhu
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/16/3563
_version_ 1797583992547966976
author Mustafa Ibrahim Khaleel
Mejdl Safran
Sultan Alfarhood
Michelle Zhu
author_facet Mustafa Ibrahim Khaleel
Mejdl Safran
Sultan Alfarhood
Michelle Zhu
author_sort Mustafa Ibrahim Khaleel
collection DOAJ
description Scheduling jobs within a cloud environment is a critical area of research that necessitates meticulous analysis. It entails the challenge of optimally assigning jobs to various cloud servers, each with different capabilities, and is classified as a non-deterministic polynomial (NP) problem. Many conventional methods have been suggested to tackle this difficulty, but they often struggle to find nearly perfect solutions within a reasonable timeframe. As a result, researchers have turned to evolutionary algorithms to tackle this problem. However, relying on a single metaheuristic approach can be problematic as it may become trapped in local optima, resulting in slow convergence. Therefore, combining different metaheuristic strategies to improve the overall system enactment is essential. This paper presents a novel approach that integrates three methods to enhance exploration and exploitation, increasing search process efficiency and optimizing many-objective functions. In the initial phase, we adopt cooperative game theory with merge-and-split techniques to train computing hosts at different utilization load levels, determining the ideal utilization for each server. This approach ensures that servers operate at their highest utilization range, maximizing their profitability. In the second stage, we incorporate the mean variation of the grey wolf optimization algorithm, making significant adjustments to the encircling and hunting phases to enhance the exploitation of the search space. In the final phase, we introduce an innovative pollination operator inspired by the sunflower optimization algorithm to enrich the exploration of the search domain. By skillfully balancing exploration and exploitation, we effectively address many-objective optimization problems. To validate the performance of our proposed method, we conducted experiments using both real-world and synthesized datasets, employing CloudSim software version 5.0. The evaluation involved two sets of experiments to measure different evaluation metrics. In the first experiment, we focused on minimizing factors such as energy costs, completion time, latency, and SLA violations. The second experiment, in contrast, aimed at maximizing metrics such as service quality, bandwidth utilization, asset utilization ratio, and service provider outcomes. The results from these experiments unequivocally demonstrate the outstanding performance of our algorithm, surpassing existing state-of-the-art approaches.
first_indexed 2024-03-10T23:46:01Z
format Article
id doaj.art-dd35d4182a2a487baa038c1305fc2649
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T23:46:01Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-dd35d4182a2a487baa038c1305fc26492023-11-19T02:03:51ZengMDPI AGMathematics2227-73902023-08-011116356310.3390/math11163563A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split TheoryMustafa Ibrahim Khaleel0Mejdl Safran1Sultan Alfarhood2Michelle Zhu3Computer Department, College of Science, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, IraqDepartment of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi ArabiaDepartment of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi ArabiaDepartment of Computer Science, College of Science and Mathematics, Montclair State University, Montclair, NJ 07043, USAScheduling jobs within a cloud environment is a critical area of research that necessitates meticulous analysis. It entails the challenge of optimally assigning jobs to various cloud servers, each with different capabilities, and is classified as a non-deterministic polynomial (NP) problem. Many conventional methods have been suggested to tackle this difficulty, but they often struggle to find nearly perfect solutions within a reasonable timeframe. As a result, researchers have turned to evolutionary algorithms to tackle this problem. However, relying on a single metaheuristic approach can be problematic as it may become trapped in local optima, resulting in slow convergence. Therefore, combining different metaheuristic strategies to improve the overall system enactment is essential. This paper presents a novel approach that integrates three methods to enhance exploration and exploitation, increasing search process efficiency and optimizing many-objective functions. In the initial phase, we adopt cooperative game theory with merge-and-split techniques to train computing hosts at different utilization load levels, determining the ideal utilization for each server. This approach ensures that servers operate at their highest utilization range, maximizing their profitability. In the second stage, we incorporate the mean variation of the grey wolf optimization algorithm, making significant adjustments to the encircling and hunting phases to enhance the exploitation of the search space. In the final phase, we introduce an innovative pollination operator inspired by the sunflower optimization algorithm to enrich the exploration of the search domain. By skillfully balancing exploration and exploitation, we effectively address many-objective optimization problems. To validate the performance of our proposed method, we conducted experiments using both real-world and synthesized datasets, employing CloudSim software version 5.0. The evaluation involved two sets of experiments to measure different evaluation metrics. In the first experiment, we focused on minimizing factors such as energy costs, completion time, latency, and SLA violations. The second experiment, in contrast, aimed at maximizing metrics such as service quality, bandwidth utilization, asset utilization ratio, and service provider outcomes. The results from these experiments unequivocally demonstrate the outstanding performance of our algorithm, surpassing existing state-of-the-art approaches.https://www.mdpi.com/2227-7390/11/16/3563mean grey wolf optimizationcloud computingjob schedulingimproved sunflower algorithmmerge-and-split cooperative game theory
spellingShingle Mustafa Ibrahim Khaleel
Mejdl Safran
Sultan Alfarhood
Michelle Zhu
A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
Mathematics
mean grey wolf optimization
cloud computing
job scheduling
improved sunflower algorithm
merge-and-split cooperative game theory
title A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
title_full A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
title_fullStr A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
title_full_unstemmed A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
title_short A Hybrid Many-Objective Optimization Algorithm for Job Scheduling in Cloud Computing Based on Merge-and-Split Theory
title_sort hybrid many objective optimization algorithm for job scheduling in cloud computing based on merge and split theory
topic mean grey wolf optimization
cloud computing
job scheduling
improved sunflower algorithm
merge-and-split cooperative game theory
url https://www.mdpi.com/2227-7390/11/16/3563
work_keys_str_mv AT mustafaibrahimkhaleel ahybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT mejdlsafran ahybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT sultanalfarhood ahybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT michellezhu ahybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT mustafaibrahimkhaleel hybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT mejdlsafran hybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT sultanalfarhood hybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory
AT michellezhu hybridmanyobjectiveoptimizationalgorithmforjobschedulingincloudcomputingbasedonmergeandsplittheory