Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers
Identifying structural variants (SVs) under positive selection in cancer is challenging. Here, the authors develop CSVDriver, a method that computes SV breakpoint proximity and the contribution of elements such as topologically associating domains, and identifies loci that show signs of positive sel...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-09-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-022-32945-2 |
Summary: | Identifying structural variants (SVs) under positive selection in cancer is challenging. Here, the authors develop CSVDriver, a method that computes SV breakpoint proximity and the contribution of elements such as topologically associating domains, and identifies loci that show signs of positive selection and contain known and putative drivers. |
---|---|
ISSN: | 2041-1723 |