Deep learning of contagion dynamics on complex networks

Prediction of contagion dynamics is of relevance for epidemic and social complex networks. Murphy et al. propose a data-driven approach based on deep learning which allows to learn mechanisms governing network dynamics and make predictions beyond the training data for arbitrary network structures.

Bibliographic Details
Main Authors: Charles Murphy, Edward Laurence, Antoine Allard
Format: Article
Language:English
Published: Nature Portfolio 2021-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-24732-2
_version_ 1818994094453555200
author Charles Murphy
Edward Laurence
Antoine Allard
author_facet Charles Murphy
Edward Laurence
Antoine Allard
author_sort Charles Murphy
collection DOAJ
description Prediction of contagion dynamics is of relevance for epidemic and social complex networks. Murphy et al. propose a data-driven approach based on deep learning which allows to learn mechanisms governing network dynamics and make predictions beyond the training data for arbitrary network structures.
first_indexed 2024-12-20T20:52:29Z
format Article
id doaj.art-dd478dea3f164012a35d9b2dec8c9bb8
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-20T20:52:29Z
publishDate 2021-08-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-dd478dea3f164012a35d9b2dec8c9bb82022-12-21T19:26:54ZengNature PortfolioNature Communications2041-17232021-08-0112111110.1038/s41467-021-24732-2Deep learning of contagion dynamics on complex networksCharles Murphy0Edward Laurence1Antoine Allard2Département de physique, de génie physique et d’optique, Université LavalDépartement de physique, de génie physique et d’optique, Université LavalDépartement de physique, de génie physique et d’optique, Université LavalPrediction of contagion dynamics is of relevance for epidemic and social complex networks. Murphy et al. propose a data-driven approach based on deep learning which allows to learn mechanisms governing network dynamics and make predictions beyond the training data for arbitrary network structures.https://doi.org/10.1038/s41467-021-24732-2
spellingShingle Charles Murphy
Edward Laurence
Antoine Allard
Deep learning of contagion dynamics on complex networks
Nature Communications
title Deep learning of contagion dynamics on complex networks
title_full Deep learning of contagion dynamics on complex networks
title_fullStr Deep learning of contagion dynamics on complex networks
title_full_unstemmed Deep learning of contagion dynamics on complex networks
title_short Deep learning of contagion dynamics on complex networks
title_sort deep learning of contagion dynamics on complex networks
url https://doi.org/10.1038/s41467-021-24732-2
work_keys_str_mv AT charlesmurphy deeplearningofcontagiondynamicsoncomplexnetworks
AT edwardlaurence deeplearningofcontagiondynamicsoncomplexnetworks
AT antoineallard deeplearningofcontagiondynamicsoncomplexnetworks