MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data

Abstract Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include mul...

Full description

Bibliographic Details
Main Authors: Ricard Argelaguet, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten, John C. Marioni, Oliver Stegle
Format: Article
Language:English
Published: BMC 2020-05-01
Series:Genome Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13059-020-02015-1
_version_ 1818480131464757248
author Ricard Argelaguet
Damien Arnol
Danila Bredikhin
Yonatan Deloro
Britta Velten
John C. Marioni
Oliver Stegle
author_facet Ricard Argelaguet
Damien Arnol
Danila Bredikhin
Yonatan Deloro
Britta Velten
John C. Marioni
Oliver Stegle
author_sort Ricard Argelaguet
collection DOAJ
description Abstract Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.
first_indexed 2024-12-10T11:19:09Z
format Article
id doaj.art-dd49303c2caa43bda1dbfd3b7a23de13
institution Directory Open Access Journal
issn 1474-760X
language English
last_indexed 2024-12-10T11:19:09Z
publishDate 2020-05-01
publisher BMC
record_format Article
series Genome Biology
spelling doaj.art-dd49303c2caa43bda1dbfd3b7a23de132022-12-22T01:51:03ZengBMCGenome Biology1474-760X2020-05-0121111710.1186/s13059-020-02015-1MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell dataRicard Argelaguet0Damien Arnol1Danila Bredikhin2Yonatan Deloro3Britta Velten4John C. Marioni5Oliver Stegle6European Bioinformatics Institute (EMBL-EBI)European Bioinformatics Institute (EMBL-EBI)European Molecular Biology Laboratory (EMBL)European Bioinformatics Institute (EMBL-EBI)European Molecular Biology Laboratory (EMBL)European Bioinformatics Institute (EMBL-EBI)European Bioinformatics Institute (EMBL-EBI)Abstract Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.http://link.springer.com/article/10.1186/s13059-020-02015-1Single cellMulti-omicsData integrationFactor analysis
spellingShingle Ricard Argelaguet
Damien Arnol
Danila Bredikhin
Yonatan Deloro
Britta Velten
John C. Marioni
Oliver Stegle
MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
Genome Biology
Single cell
Multi-omics
Data integration
Factor analysis
title MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
title_full MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
title_fullStr MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
title_full_unstemmed MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
title_short MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
title_sort mofa a statistical framework for comprehensive integration of multi modal single cell data
topic Single cell
Multi-omics
Data integration
Factor analysis
url http://link.springer.com/article/10.1186/s13059-020-02015-1
work_keys_str_mv AT ricardargelaguet mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT damienarnol mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT danilabredikhin mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT yonatandeloro mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT brittavelten mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT johncmarioni mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata
AT oliverstegle mofaastatisticalframeworkforcomprehensiveintegrationofmultimodalsinglecelldata