Modelling Bending Stiffness and Vibration Characteristics to Enable Simulation-Driven Ski Design

When developing alpine skis, new design is often built upon experience from what has been done in the past. This allows for stable but incremental improvements that limit the possibilities of ground-breaking design changes. To allow such major changes, without risking spending a fortune on trial and...

Full description

Bibliographic Details
Main Authors: John Borenius, Henrik Edman, Albin Lindmark, Marcus Pålsson, Thomas Abrahamsson, Martin Fagerström
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Proceedings
Subjects:
Online Access:https://www.mdpi.com/2504-3900/49/1/157
Description
Summary:When developing alpine skis, new design is often built upon experience from what has been done in the past. This allows for stable but incremental improvements that limit the possibilities of ground-breaking design changes. To allow such major changes, without risking spending a fortune on trial and error studies, simulation-based design is a must. This paper presents a method for such a simulation-based design approach, focusing on the effect of the internal ski structure and its effect on bending and vibration characteristics. As a prototype ski, we have studied Faction Skis’ Candide 3.0, for which a finite element model was developed and validated. In the next step, the effect of a design ski variation was analysed to demonstrate how simulation-based screening of design options can be easily implemented.
ISSN:2504-3900