Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory

This paper considers the parameter estimation problems of Hammerstein finite impulse response moving average (FIR–MA) systems. Based on the matrix transformation and the hierarchical identification principle, the Hammerstein FIR–MA system is recast into two models, and a decomposition-based recursiv...

Full description

Bibliographic Details
Main Authors: Yan Ji, Jinde Cao
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/438
_version_ 1797486394745028608
author Yan Ji
Jinde Cao
author_facet Yan Ji
Jinde Cao
author_sort Yan Ji
collection DOAJ
description This paper considers the parameter estimation problems of Hammerstein finite impulse response moving average (FIR–MA) systems. Based on the matrix transformation and the hierarchical identification principle, the Hammerstein FIR–MA system is recast into two models, and a decomposition-based recursive least-squares algorithm is deduced for estimating the parameters of these two models. In order to further improve the accuracy of the parameter estimation, a multi-innovation hierarchical least-squares algorithm based on the data filtering theory proposed. Finally, a simulation example demonstrates the effectiveness of the proposed scheme.
first_indexed 2024-03-09T23:32:36Z
format Article
id doaj.art-dd6a16d180da40d08f096bb15cad9076
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:32:36Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-dd6a16d180da40d08f096bb15cad90762023-11-23T17:07:30ZengMDPI AGMathematics2227-73902022-01-0110343810.3390/math10030438Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering TheoryYan Ji0Jinde Cao1School of Mathematics, Southeast University, Nanjing 210096, ChinaSchool of Mathematics, Southeast University, Nanjing 210096, ChinaThis paper considers the parameter estimation problems of Hammerstein finite impulse response moving average (FIR–MA) systems. Based on the matrix transformation and the hierarchical identification principle, the Hammerstein FIR–MA system is recast into two models, and a decomposition-based recursive least-squares algorithm is deduced for estimating the parameters of these two models. In order to further improve the accuracy of the parameter estimation, a multi-innovation hierarchical least-squares algorithm based on the data filtering theory proposed. Finally, a simulation example demonstrates the effectiveness of the proposed scheme.https://www.mdpi.com/2227-7390/10/3/438least-squaresiterative identificationhierarchicalparameter estimationmultivariable system
spellingShingle Yan Ji
Jinde Cao
Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
Mathematics
least-squares
iterative identification
hierarchical
parameter estimation
multivariable system
title Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
title_full Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
title_fullStr Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
title_full_unstemmed Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
title_short Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
title_sort parameter estimation algorithms for hammerstein finite impulse response moving average systems using the data filtering theory
topic least-squares
iterative identification
hierarchical
parameter estimation
multivariable system
url https://www.mdpi.com/2227-7390/10/3/438
work_keys_str_mv AT yanji parameterestimationalgorithmsforhammersteinfiniteimpulseresponsemovingaveragesystemsusingthedatafilteringtheory
AT jindecao parameterestimationalgorithmsforhammersteinfiniteimpulseresponsemovingaveragesystemsusingthedatafilteringtheory