Summary: | This paper introduces a new method to analyze the positional accuracy of georeferenced satellite images without the use of ground control points. Compared to the traditional method used to carry out this kind of analysis, our approach provides a semiautomatic way to obtain a larger number of control points that satisfy the requirements of current standards regarding the size of the set of sample points, the positional accuracy of such points, the distance between points, and the distribution of points in the sample. Our methodology exploits high quality orthoimages, such as those provided by the Aerial Orthography National Plan (PNOA)—developed by the Spanish National Geographic Institute—and has been tested on spatial data from Landsat 8. Our method works under the current international standard (ASPRS 2014) and exhibits similar performance than other well-known methods to analyze the positional accuracy of georeferenced images based on the use of independent ground control points. More specifically, the positional accuracy achieved for a Landsat 8 dataset evaluated by the traditional method is 5.22 ± 1.95 m, and when evaluated with the proposed method, it exhibits a typical accuracy of 5.76 ± 0.50 m. Our experimental results confirm that the method is equally effective and less expensive than other available methods to analyze the positional accuracy of satellite images.
|