On semiderivations of *-prime rings
Let R be a ∗-prime ring with involution ∗ and center Z(R). An additive mapping F:R→R is called a semiderivation if there exists a function g:R→R such that (i) F(xy)=F(x)g(y)+xF(y)=F(x)y+g(x)F(y) and (ii) F(g(x))=g(F(x)) hold for all x,y∈R. In the present paper, some well known results concerning der...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2015-08-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23687 |
_version_ | 1819111330249965568 |
---|---|
author | Öznur Gölbaşı Onur Ağırtıcı |
author_facet | Öznur Gölbaşı Onur Ağırtıcı |
author_sort | Öznur Gölbaşı |
collection | DOAJ |
description | Let R be a ∗-prime ring with involution ∗ and center Z(R). An additive mapping F:R→R is called a semiderivation if there exists a function g:R→R such that (i) F(xy)=F(x)g(y)+xF(y)=F(x)y+g(x)F(y) and (ii) F(g(x))=g(F(x)) hold for all x,y∈R. In the present paper, some well known results concerning derivations of prime rings are extended to semiderivations of ∗-prime rings. |
first_indexed | 2024-12-22T03:55:54Z |
format | Article |
id | doaj.art-dd7a49ddb1bb453e89fa8ec9432ff026 |
institution | Directory Open Access Journal |
issn | 0037-8712 2175-1188 |
language | English |
last_indexed | 2024-12-22T03:55:54Z |
publishDate | 2015-08-01 |
publisher | Sociedade Brasileira de Matemática |
record_format | Article |
series | Boletim da Sociedade Paranaense de Matemática |
spelling | doaj.art-dd7a49ddb1bb453e89fa8ec9432ff0262022-12-21T18:39:52ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882015-08-0133217718410.5269/bspm.v33i2.2368711445On semiderivations of *-prime ringsÖznur Gölbaşı0Onur Ağırtıcı1Cumhuriyet University Faculty of Science, Department of Mathematics,Cumhuriyet University Faculty of Science, Department of Mathematics,Let R be a ∗-prime ring with involution ∗ and center Z(R). An additive mapping F:R→R is called a semiderivation if there exists a function g:R→R such that (i) F(xy)=F(x)g(y)+xF(y)=F(x)y+g(x)F(y) and (ii) F(g(x))=g(F(x)) hold for all x,y∈R. In the present paper, some well known results concerning derivations of prime rings are extended to semiderivations of ∗-prime rings.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23687*-prime ringsderivationssemiderivations |
spellingShingle | Öznur Gölbaşı Onur Ağırtıcı On semiderivations of *-prime rings Boletim da Sociedade Paranaense de Matemática *-prime rings derivations semiderivations |
title | On semiderivations of *-prime rings |
title_full | On semiderivations of *-prime rings |
title_fullStr | On semiderivations of *-prime rings |
title_full_unstemmed | On semiderivations of *-prime rings |
title_short | On semiderivations of *-prime rings |
title_sort | on semiderivations of prime rings |
topic | *-prime rings derivations semiderivations |
url | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/23687 |
work_keys_str_mv | AT oznurgolbası onsemiderivationsofprimerings AT onuragırtıcı onsemiderivationsofprimerings |