From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.

RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge...

Full description

Bibliographic Details
Main Authors: Jilong Li, Jie Hou, Lin Sun, Jordan Maximillian Wilkins, Yuan Lu, Chad E Niederhuth, Benjamin Ryan Merideth, Thomas P Mawhinney, Valeri V Mossine, C Michael Greenlief, John C Walker, William R Folk, Mark Hannink, Dennis B Lubahn, James A Birchler, Jianlin Cheng
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4406561?pdf=render
_version_ 1828915929537314816
author Jilong Li
Jie Hou
Lin Sun
Jordan Maximillian Wilkins
Yuan Lu
Chad E Niederhuth
Benjamin Ryan Merideth
Thomas P Mawhinney
Valeri V Mossine
C Michael Greenlief
John C Walker
William R Folk
Mark Hannink
Dennis B Lubahn
James A Birchler
Jianlin Cheng
author_facet Jilong Li
Jie Hou
Lin Sun
Jordan Maximillian Wilkins
Yuan Lu
Chad E Niederhuth
Benjamin Ryan Merideth
Thomas P Mawhinney
Valeri V Mossine
C Michael Greenlief
John C Walker
William R Folk
Mark Hannink
Dennis B Lubahn
James A Birchler
Jianlin Cheng
author_sort Jilong Li
collection DOAJ
description RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner--a multi-level bioinformatics protocol and pipeline--has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.
first_indexed 2024-12-13T20:23:16Z
format Article
id doaj.art-dd7b6ee36d2d4e6981a4bc5845bd51b4
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-13T20:23:16Z
publishDate 2015-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-dd7b6ee36d2d4e6981a4bc5845bd51b42022-12-21T23:32:38ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01104e012500010.1371/journal.pone.0125000From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.Jilong LiJie HouLin SunJordan Maximillian WilkinsYuan LuChad E NiederhuthBenjamin Ryan MeridethThomas P MawhinneyValeri V MossineC Michael GreenliefJohn C WalkerWilliam R FolkMark HanninkDennis B LubahnJames A BirchlerJianlin ChengRNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner--a multi-level bioinformatics protocol and pipeline--has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.http://europepmc.org/articles/PMC4406561?pdf=render
spellingShingle Jilong Li
Jie Hou
Lin Sun
Jordan Maximillian Wilkins
Yuan Lu
Chad E Niederhuth
Benjamin Ryan Merideth
Thomas P Mawhinney
Valeri V Mossine
C Michael Greenlief
John C Walker
William R Folk
Mark Hannink
Dennis B Lubahn
James A Birchler
Jianlin Cheng
From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
PLoS ONE
title From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
title_full From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
title_fullStr From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
title_full_unstemmed From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
title_short From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data.
title_sort from gigabyte to kilobyte a bioinformatics protocol for mining large rna seq transcriptomics data
url http://europepmc.org/articles/PMC4406561?pdf=render
work_keys_str_mv AT jilongli fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT jiehou fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT linsun fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT jordanmaximillianwilkins fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT yuanlu fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT chadeniederhuth fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT benjaminryanmerideth fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT thomaspmawhinney fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT valerivmossine fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT cmichaelgreenlief fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT johncwalker fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT williamrfolk fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT markhannink fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT dennisblubahn fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT jamesabirchler fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata
AT jianlincheng fromgigabytetokilobyteabioinformaticsprotocolformininglargernaseqtranscriptomicsdata