The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution

We propose a resolution of the discrepancy between the proton yield predicted by the statistical hadronization approach and data on hadron production in ultra-relativistic nuclear collisions at the LHC. Applying the S-matrix formulation of statistical mechanics to include pion-nucleon interactions,...

Full description

Bibliographic Details
Main Authors: Anton Andronic, Peter Braun-Munzinger, Bengt Friman, Pok Man Lo, Krzysztof Redlich, Johanna Stachel
Format: Article
Language:English
Published: Elsevier 2019-05-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269319302217
Description
Summary:We propose a resolution of the discrepancy between the proton yield predicted by the statistical hadronization approach and data on hadron production in ultra-relativistic nuclear collisions at the LHC. Applying the S-matrix formulation of statistical mechanics to include pion-nucleon interactions, we reexamine their contribution to the proton yield, taking resonance widths and the presence of nonresonant correlations into account. The effect of multi-pion-nucleon interactions is estimated using lattice QCD results on the baryon-charge susceptibility. We show that a consistent implementation of these features in the statistical hadronization model, leads to a reduction of the predicted proton yield, which then quantitatively matches data of the ALICE collaboration for Pb-Pb collisions at the LHC.
ISSN:0370-2693