Eigenvalues homogenization for the fractional p-Laplacian

In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.

Bibliographic Details
Main Author: Ariel Martin Salort
Format: Article
Language:English
Published: Texas State University 2016-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/312/abstr.html
Description
Summary:In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered.
ISSN:1072-6691