Human neutral genetic variation and forensic STR data.

The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by u...

Full description

Bibliographic Details
Main Authors: Nuno M Silva, Luísa Pereira, Estella S Poloni, Mathias Currat
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3504113?pdf=render
_version_ 1819231872197066752
author Nuno M Silva
Luísa Pereira
Estella S Poloni
Mathias Currat
author_facet Nuno M Silva
Luísa Pereira
Estella S Poloni
Mathias Currat
author_sort Nuno M Silva
collection DOAJ
description The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.
first_indexed 2024-12-23T11:51:52Z
format Article
id doaj.art-dd8c94222b304ddf98a39acde7b1210d
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-23T11:51:52Z
publishDate 2012-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-dd8c94222b304ddf98a39acde7b1210d2022-12-21T17:48:11ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-01711e4966610.1371/journal.pone.0049666Human neutral genetic variation and forensic STR data.Nuno M SilvaLuísa PereiraEstella S PoloniMathias CurratThe forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.http://europepmc.org/articles/PMC3504113?pdf=render
spellingShingle Nuno M Silva
Luísa Pereira
Estella S Poloni
Mathias Currat
Human neutral genetic variation and forensic STR data.
PLoS ONE
title Human neutral genetic variation and forensic STR data.
title_full Human neutral genetic variation and forensic STR data.
title_fullStr Human neutral genetic variation and forensic STR data.
title_full_unstemmed Human neutral genetic variation and forensic STR data.
title_short Human neutral genetic variation and forensic STR data.
title_sort human neutral genetic variation and forensic str data
url http://europepmc.org/articles/PMC3504113?pdf=render
work_keys_str_mv AT nunomsilva humanneutralgeneticvariationandforensicstrdata
AT luisapereira humanneutralgeneticvariationandforensicstrdata
AT estellaspoloni humanneutralgeneticvariationandforensicstrdata
AT mathiascurrat humanneutralgeneticvariationandforensicstrdata