Effects of Transition Elements on the Structural, Elastic Properties and Relative Phase Stability of L1<sub>2</sub> γ′-Co<sub>3</sub>Nb from First-Principles Calculations

In order to explore novel light-weight Co-Nb-based superalloys with excellent performance, we studied the effects of alloying elements including Sc, Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt on the structural stability, elastic and thermodynamic properties of γ′-...

Full description

Bibliographic Details
Main Authors: Cuiping Wang, Chi Zhang, Yichun Wang, Jiajia Han, Weiwei Xu, Xingjun Liu
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/6/933
Description
Summary:In order to explore novel light-weight Co-Nb-based superalloys with excellent performance, we studied the effects of alloying elements including Sc, Ti, V, Cr, Mn, Fe, Ni, Y, Zr, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir and Pt on the structural stability, elastic and thermodynamic properties of γ′-Co<sub>3</sub>Nb through first-principles calculations. The results of transfer energy indicate that Y, Zr, Hf and Ta have a strong preference for Nb sites, while Ni, Rh, Pd, Ir and Pt have a strong tendency to occupy the Co sites. In the ground state, the addition of alloying elements plays a positive role in improving the stability of γ′-Co<sub>3</sub>Nb compound. The order of stabilizing effect is as follows: Ti > Ta > Hf > Pt > Ir > Zr > Rh > V > Ni > W > Sc > Mo > Pd > Re > Ru. Combining the calculation results of elastic properties and electronic structure, we found that the addition of alloying elements can strengthen the mechanical properties of γ′-Co<sub>3</sub>Nb, and the higher spatial symmetry of electrons accounts for improving the shear modulus of γ′-Co<sub>3</sub>Nb compound. At finite temperatures, Ti, Ta, Hf, Pt, Ir, Zr and V significantly expand the stabilization temperature range of the γ′ phase and are potential alloying elements to improve the high-temperature stability of the γ′-Co<sub>3</sub>Nb compounds.
ISSN:2075-4701