Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia

Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flood...

Full description

Bibliographic Details
Main Authors: A. B. Pour, M. Hashim
Format: Article
Language:English
Published: Copernicus Publications 2017-07-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://www.nat-hazards-earth-syst-sci.net/17/1285/2017/nhess-17-1285-2017.pdf
_version_ 1818624386136014848
author A. B. Pour
M. Hashim
author_facet A. B. Pour
M. Hashim
author_sort A. B. Pour
collection DOAJ
description Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N–S trending of the Bentong–Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N–S, NE–SW and NNE–SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.
first_indexed 2024-12-16T18:56:08Z
format Article
id doaj.art-dd9bf19b4665407d9017eeaf9bc0bbc9
institution Directory Open Access Journal
issn 1561-8633
1684-9981
language English
last_indexed 2024-12-16T18:56:08Z
publishDate 2017-07-01
publisher Copernicus Publications
record_format Article
series Natural Hazards and Earth System Sciences
spelling doaj.art-dd9bf19b4665407d9017eeaf9bc0bbc92022-12-21T22:20:31ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812017-07-01171285130310.5194/nhess-17-1285-2017Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, MalaysiaA. B. Pour0M. Hashim1Geoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor Bahru, UTM Skudai, 81310, MalaysiaGeoscience and Digital Earth Centre (INSTeG), Universiti Teknologi Malaysia, Johor Bahru, UTM Skudai, 81310, MalaysiaIdentification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N–S trending of the Bentong–Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N–S, NE–SW and NNE–SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.https://www.nat-hazards-earth-syst-sci.net/17/1285/2017/nhess-17-1285-2017.pdf
spellingShingle A. B. Pour
M. Hashim
Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
Natural Hazards and Earth System Sciences
title Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
title_full Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
title_fullStr Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
title_full_unstemmed Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
title_short Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
title_sort application of landsat 8 and alos 2 data for structural and landslide hazard mapping in kelantan malaysia
url https://www.nat-hazards-earth-syst-sci.net/17/1285/2017/nhess-17-1285-2017.pdf
work_keys_str_mv AT abpour applicationoflandsat8andalos2dataforstructuralandlandslidehazardmappinginkelantanmalaysia
AT mhashim applicationoflandsat8andalos2dataforstructuralandlandslidehazardmappinginkelantanmalaysia