Characterization of Metabolic Correlations of Ursodeoxycholic Acid with Other Bile Acid Species through In Vitro Sequential Metabolism and Isomer-Focused Identification

As a first-line agent for cholestasis treatment in a clinic, ursodeoxycholic acid rectifies the perturbed bile acids (BAs) submetabolome in a holistic manner. Considering the endogenous distribution of ursodeoxycholic acid and extensive occurrences of isomeric metabolites, it is challenging to point...

Full description

Bibliographic Details
Main Authors: Wei Li, Wei Chen, Xiaoya Niu, Chen Zhao, Pengfei Tu, Jun Li, Wenjing Liu, Yuelin Song
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/12/4801
Description
Summary:As a first-line agent for cholestasis treatment in a clinic, ursodeoxycholic acid rectifies the perturbed bile acids (BAs) submetabolome in a holistic manner. Considering the endogenous distribution of ursodeoxycholic acid and extensive occurrences of isomeric metabolites, it is challenging to point out whether a given bile acid species is impacted by ursodeoxycholic acid in a direct or indirect manner, thus hindering the therapeutic mechanism clarification. Here, an in-depth exploration of the metabolism pattern of ursodeoxycholic acid was attempted. Sequential metabolism in vitro with enzyme-enriched liver microsomes was implemented to simulate the step-wise metabolism and to capture the metabolically labile intermediates in the absence of endogenous BAs. Squared energy-resolved mass spectrometry (ER<sup>2</sup>-MS) was utilized to achieve isomeric identification of the conjugated metabolites. As a result, <b>20</b> metabolites (<b>M1</b>–<b>M20</b>) in total were observed and confirmatively identified. Of those, eight metabolites were generated by hydroxylation, oxidation, and epimerization, which were further metabolized to nine glucuronides and three sulfates by uridine diphosphate-glycosyltransferases and sulfotransferases, respectively. Regarding a given phase II metabolite, the conjugation sites were correlated with first-generation breakdown graphs corresponding to the linkage fission mediated by collision-induced dissociation, and the structural nuclei were identified by matching second-generation breakdown graphs with the known structures. Together, except for intestinal-bacteria-involved biotransformation, the current study characterized BA species directly influenced by ursodeoxycholic acid administration. Moreover, sequential metabolism in vitro should be a meaningful way of characterizing the metabolic pathways of endogenous substances, and squared energy-resolved mass spectrometry is a legitimate tool for structurally identifying phase II metabolites.
ISSN:1420-3049