Singular moduli of rth Roots of modular functions
When singular moduli of Hauptmodules generate ring class fields (resp. ray class fields) of imaginary quadratic fields, using the theory of Shimura reciprocity law, we determine a necessary and sufficient condition for singular moduli of rrth roots of the Hauptmodules to generate the same ring class...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2023-08-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2022-0609 |
_version_ | 1827866226784731136 |
---|---|
author | Choi SoYoung |
author_facet | Choi SoYoung |
author_sort | Choi SoYoung |
collection | DOAJ |
description | When singular moduli of Hauptmodules generate ring class fields (resp. ray class fields) of imaginary quadratic fields, using the theory of Shimura reciprocity law, we determine a necessary and sufficient condition for singular moduli of rrth roots of the Hauptmodules to generate the same ring class fields (resp. ray class fields) as do the singular moduli of the Hauptmodules. |
first_indexed | 2024-03-12T15:00:56Z |
format | Article |
id | doaj.art-ddac27b515c14e0b8aeb8f45a174cc18 |
institution | Directory Open Access Journal |
issn | 2391-5455 |
language | English |
last_indexed | 2024-03-12T15:00:56Z |
publishDate | 2023-08-01 |
publisher | De Gruyter |
record_format | Article |
series | Open Mathematics |
spelling | doaj.art-ddac27b515c14e0b8aeb8f45a174cc182023-08-14T07:06:30ZengDe GruyterOpen Mathematics2391-54552023-08-01211pp. 25532610.1515/math-2022-0609Singular moduli of rth Roots of modular functionsChoi SoYoung0Department of Mathematics Education and RINS, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of KoreaWhen singular moduli of Hauptmodules generate ring class fields (resp. ray class fields) of imaginary quadratic fields, using the theory of Shimura reciprocity law, we determine a necessary and sufficient condition for singular moduli of rrth roots of the Hauptmodules to generate the same ring class fields (resp. ray class fields) as do the singular moduli of the Hauptmodules.https://doi.org/10.1515/math-2022-0609singular modulusclass fieldmodular function11f0311r37 |
spellingShingle | Choi SoYoung Singular moduli of rth Roots of modular functions Open Mathematics singular modulus class field modular function 11f03 11r37 |
title | Singular moduli of rth Roots of modular functions |
title_full | Singular moduli of rth Roots of modular functions |
title_fullStr | Singular moduli of rth Roots of modular functions |
title_full_unstemmed | Singular moduli of rth Roots of modular functions |
title_short | Singular moduli of rth Roots of modular functions |
title_sort | singular moduli of rth roots of modular functions |
topic | singular modulus class field modular function 11f03 11r37 |
url | https://doi.org/10.1515/math-2022-0609 |
work_keys_str_mv | AT choisoyoung singularmoduliofrthrootsofmodularfunctions |