Generalized Beta Prime Distribution Applied to Finite Element Error Approximation

In this paper, we propose a new family of probability laws based on the Generalized Beta Prime distribution to evaluate the relative accuracy between two Lagrange finite elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><sem...

Full description

Bibliographic Details
Main Authors: Joël Chaskalovic, Franck Assous
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/3/84
_version_ 1797472865540374528
author Joël Chaskalovic
Franck Assous
author_facet Joël Chaskalovic
Franck Assous
author_sort Joël Chaskalovic
collection DOAJ
description In this paper, we propose a new family of probability laws based on the Generalized Beta Prime distribution to evaluate the relative accuracy between two Lagrange finite elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub><mo>,</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>1</mn></msub><mo><</mo><msub><mi>k</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Usually, the relative finite element accuracy is based on the comparison of the asymptotic speed of convergence, when the mesh size <i>h</i> goes to zero. The new probability laws we propose here highlight that there exists, depending on <i>h</i>, cases where the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> finite element is more likely accurate than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula> element. To confirm this assertion, we highlight, using numerical examples, the quality of the fit between the statistical frequencies and the corresponding probabilities, as determined by the probability law. This illustrates that, when <i>h</i> goes away from zero, a finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> may produce more precise results than a finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula>, since the probability of the event “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula><i>is more accurate than</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula>” becomes greater than 0.5. In these cases, finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula> is more likely overqualified.
first_indexed 2024-03-09T20:07:12Z
format Article
id doaj.art-ddad0b7bc224433d857e148c1b56bc1a
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T20:07:12Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-ddad0b7bc224433d857e148c1b56bc1a2023-11-24T00:28:35ZengMDPI AGAxioms2075-16802022-02-011138410.3390/axioms11030084Generalized Beta Prime Distribution Applied to Finite Element Error ApproximationJoël Chaskalovic0Franck Assous1Jean Le Rond d’Alembert Institute, Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, FranceDepartment of Mathematics, Ariel University, Ariel 40700, IsraelIn this paper, we propose a new family of probability laws based on the Generalized Beta Prime distribution to evaluate the relative accuracy between two Lagrange finite elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub><mo>,</mo><mrow><mo>(</mo><msub><mi>k</mi><mn>1</mn></msub><mo><</mo><msub><mi>k</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Usually, the relative finite element accuracy is based on the comparison of the asymptotic speed of convergence, when the mesh size <i>h</i> goes to zero. The new probability laws we propose here highlight that there exists, depending on <i>h</i>, cases where the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> finite element is more likely accurate than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula> element. To confirm this assertion, we highlight, using numerical examples, the quality of the fit between the statistical frequencies and the corresponding probabilities, as determined by the probability law. This illustrates that, when <i>h</i> goes away from zero, a finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula> may produce more precise results than a finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula>, since the probability of the event “<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>1</mn></msub></msub></semantics></math></inline-formula><i>is more accurate than</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula>” becomes greater than 0.5. In these cases, finite element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><msub><mi>k</mi><mn>2</mn></msub></msub></semantics></math></inline-formula> is more likely overqualified.https://www.mdpi.com/2075-1680/11/3/84error estimatesfinite elementsbramble-hilbert lemmaprobabilistic numerics
spellingShingle Joël Chaskalovic
Franck Assous
Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
Axioms
error estimates
finite elements
bramble-hilbert lemma
probabilistic numerics
title Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
title_full Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
title_fullStr Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
title_full_unstemmed Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
title_short Generalized Beta Prime Distribution Applied to Finite Element Error Approximation
title_sort generalized beta prime distribution applied to finite element error approximation
topic error estimates
finite elements
bramble-hilbert lemma
probabilistic numerics
url https://www.mdpi.com/2075-1680/11/3/84
work_keys_str_mv AT joelchaskalovic generalizedbetaprimedistributionappliedtofiniteelementerrorapproximation
AT franckassous generalizedbetaprimedistributionappliedtofiniteelementerrorapproximation