Dynamic Improvement of DC Microgrids Using a Dual Approach Based on Virtual Inertia

In this paper, inspired by the concept of virtual inertia in alternating current (AC) systems, a virtual impedance controller is proposed for the dynamic improvement of direct current microgrids (DCMGs). A simple and inexpensive method for injecting inertia into the system is used to adjust the outp...

Full description

Bibliographic Details
Main Authors: Mehran Jami, Qobad Shafiee, Hassan Bevrani
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:Journal of Modern Power Systems and Clean Energy
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9214978/
Description
Summary:In this paper, inspired by the concept of virtual inertia in alternating current (AC) systems, a virtual impedance controller is proposed for the dynamic improvement of direct current microgrids (DCMGs). A simple and inexpensive method for injecting inertia into the system is used to adjust the output power of each distributed generation unit without using additional equipment. The proposed controller consists of two components: a virtual capacitor and a virtual inductor. These virtual components can change the rate of change of the DC bus voltage and also improve the transient response. A small-signal analysis is carried out to verify the impact of the proposed control strategy. Numerical simulation studies validate the effectiveness of the proposed solution for increasing the inertia of DC-MGs.
ISSN:2196-5420