Autoencoder for wind power prediction

Abstract Successful integration of renewable energy sources like wind power into smart grids largely depends on accurate prediction of power from these intermittent sources. Production of wind power cannot be controlled as the wind speed can vary based on weather conditions. Accurate prediction of w...

Full description

Bibliographic Details
Main Authors: Sumaira Tasnim, Ashfaqur Rahman, Amanullah Maung Than Oo, Md. Enamul Haque
Format: Article
Language:English
Published: SpringerOpen 2017-12-01
Series:Renewables: Wind, Water, and Solar
Online Access:http://link.springer.com/article/10.1186/s40807-017-0044-x
Description
Summary:Abstract Successful integration of renewable energy sources like wind power into smart grids largely depends on accurate prediction of power from these intermittent sources. Production of wind power cannot be controlled as the wind speed can vary based on weather conditions. Accurate prediction of wind power can assist smart grid that intelligently decides on the usage of alternative power sources based on demand forecast. Time series wind speed data are normally used for wind power prediction. In this paper, we have investigated the usage of a set of secondary features obtained using deep learning for wind power prediction. Deep learning is a special form on neural network that is capable of capturing the structural properties of time series data in terms of a set of numeric features. More precisely, we have designed a two-stage autoencoder (a particular type of deep learning) and incorporated the structural features into a prediction framework. Using the structural features, we have achieved as high as 12.63% better prediction accuracy than traditionally used statistical features.
ISSN:2198-994X