On the topology of generalized quotients

Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of th...

Full description

Bibliographic Details
Main Authors: Józef Burzyk, Cezary Ferens, Piotr Mikusinski
Format: Article
Language:English
Published: Universitat Politècnica de València 2008-10-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/1801
_version_ 1811298633346187264
author Józef Burzyk
Cezary Ferens
Piotr Mikusinski
author_facet Józef Burzyk
Cezary Ferens
Piotr Mikusinski
author_sort Józef Burzyk
collection DOAJ
description Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated.
first_indexed 2024-04-13T06:22:13Z
format Article
id doaj.art-ddc8202748f24f68bd496368ae2770ca
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-04-13T06:22:13Z
publishDate 2008-10-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-ddc8202748f24f68bd496368ae2770ca2022-12-22T02:58:35ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472008-10-019220521210.4995/agt.2008.18011459On the topology of generalized quotientsJózef Burzyk0Cezary FerensPiotr Mikusinski1Technical University of SilesiaUniversity of Central FloridaGeneralized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated.http://polipapers.upv.es/index.php/AGT/article/view/1801Generalized quotientsSemigroup acting on a setQuotient topologyHausdorff topology
spellingShingle Józef Burzyk
Cezary Ferens
Piotr Mikusinski
On the topology of generalized quotients
Applied General Topology
Generalized quotients
Semigroup acting on a set
Quotient topology
Hausdorff topology
title On the topology of generalized quotients
title_full On the topology of generalized quotients
title_fullStr On the topology of generalized quotients
title_full_unstemmed On the topology of generalized quotients
title_short On the topology of generalized quotients
title_sort on the topology of generalized quotients
topic Generalized quotients
Semigroup acting on a set
Quotient topology
Hausdorff topology
url http://polipapers.upv.es/index.php/AGT/article/view/1801
work_keys_str_mv AT jozefburzyk onthetopologyofgeneralizedquotients
AT cezaryferens onthetopologyofgeneralizedquotients
AT piotrmikusinski onthetopologyofgeneralizedquotients