On the topology of generalized quotients
Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2008-10-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/1801 |
_version_ | 1811298633346187264 |
---|---|
author | Józef Burzyk Cezary Ferens Piotr Mikusinski |
author_facet | Józef Burzyk Cezary Ferens Piotr Mikusinski |
author_sort | Józef Burzyk |
collection | DOAJ |
description | Generalized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated. |
first_indexed | 2024-04-13T06:22:13Z |
format | Article |
id | doaj.art-ddc8202748f24f68bd496368ae2770ca |
institution | Directory Open Access Journal |
issn | 1576-9402 1989-4147 |
language | English |
last_indexed | 2024-04-13T06:22:13Z |
publishDate | 2008-10-01 |
publisher | Universitat Politècnica de València |
record_format | Article |
series | Applied General Topology |
spelling | doaj.art-ddc8202748f24f68bd496368ae2770ca2022-12-22T02:58:35ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472008-10-019220521210.4995/agt.2008.18011459On the topology of generalized quotientsJózef Burzyk0Cezary FerensPiotr Mikusinski1Technical University of SilesiaUniversity of Central FloridaGeneralized quotients are defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X and f is an element of a commutative semigroup G acting on X. Topologies on X and G induce a natural topology on B(X,G), the space of generalized quotients. Separation properties of this topology are investigated.http://polipapers.upv.es/index.php/AGT/article/view/1801Generalized quotientsSemigroup acting on a setQuotient topologyHausdorff topology |
spellingShingle | Józef Burzyk Cezary Ferens Piotr Mikusinski On the topology of generalized quotients Applied General Topology Generalized quotients Semigroup acting on a set Quotient topology Hausdorff topology |
title | On the topology of generalized quotients |
title_full | On the topology of generalized quotients |
title_fullStr | On the topology of generalized quotients |
title_full_unstemmed | On the topology of generalized quotients |
title_short | On the topology of generalized quotients |
title_sort | on the topology of generalized quotients |
topic | Generalized quotients Semigroup acting on a set Quotient topology Hausdorff topology |
url | http://polipapers.upv.es/index.php/AGT/article/view/1801 |
work_keys_str_mv | AT jozefburzyk onthetopologyofgeneralizedquotients AT cezaryferens onthetopologyofgeneralizedquotients AT piotrmikusinski onthetopologyofgeneralizedquotients |