Adaptive quantum error mitigation using pulse-based inverse evolutions
Abstract Quantum Error Mitigation (QEM) enables the extraction of high-quality results from the presently-available noisy quantum computers. In this approach, the effect of the noise on observables of interest can be mitigated using multiple measurements without additional hardware overhead. Unfortu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-11-01
|
Series: | npj Quantum Information |
Online Access: | https://doi.org/10.1038/s41534-023-00785-7 |
_version_ | 1797451921991139328 |
---|---|
author | Ivan Henao Jader P. Santos Raam Uzdin |
author_facet | Ivan Henao Jader P. Santos Raam Uzdin |
author_sort | Ivan Henao |
collection | DOAJ |
description | Abstract Quantum Error Mitigation (QEM) enables the extraction of high-quality results from the presently-available noisy quantum computers. In this approach, the effect of the noise on observables of interest can be mitigated using multiple measurements without additional hardware overhead. Unfortunately, current QEM techniques are limited to weak noise or lack scalability. In this work, we introduce a QEM method termed ‘Adaptive KIK’ that adapts to the noise level of the target device, and therefore, can handle moderate-to-strong noise. The implementation of the method is experimentally simple — it does not involve any tomographic information or machine-learning stage, and the number of different quantum circuits to be implemented is independent of the size of the system. Furthermore, we have shown that it can be successfully integrated with randomized compiling for handling both incoherent as well as coherent noise. Our method handles spatially correlated and time-dependent noise which enables us to run shots over the scale of days or more despite the fact that noise and calibrations change in time. Finally, we discuss and demonstrate why our results suggest that gate calibration protocols should be revised when using QEM. We demonstrate our findings in the IBM quantum computers and through numerical simulations. |
first_indexed | 2024-03-09T15:01:27Z |
format | Article |
id | doaj.art-ddcf46287c8d43f9a7029d53130e262c |
institution | Directory Open Access Journal |
issn | 2056-6387 |
language | English |
last_indexed | 2024-03-09T15:01:27Z |
publishDate | 2023-11-01 |
publisher | Nature Portfolio |
record_format | Article |
series | npj Quantum Information |
spelling | doaj.art-ddcf46287c8d43f9a7029d53130e262c2023-11-26T13:55:27ZengNature Portfolionpj Quantum Information2056-63872023-11-019111010.1038/s41534-023-00785-7Adaptive quantum error mitigation using pulse-based inverse evolutionsIvan Henao0Jader P. Santos1Raam Uzdin2Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of JerusalemFritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of JerusalemFritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of JerusalemAbstract Quantum Error Mitigation (QEM) enables the extraction of high-quality results from the presently-available noisy quantum computers. In this approach, the effect of the noise on observables of interest can be mitigated using multiple measurements without additional hardware overhead. Unfortunately, current QEM techniques are limited to weak noise or lack scalability. In this work, we introduce a QEM method termed ‘Adaptive KIK’ that adapts to the noise level of the target device, and therefore, can handle moderate-to-strong noise. The implementation of the method is experimentally simple — it does not involve any tomographic information or machine-learning stage, and the number of different quantum circuits to be implemented is independent of the size of the system. Furthermore, we have shown that it can be successfully integrated with randomized compiling for handling both incoherent as well as coherent noise. Our method handles spatially correlated and time-dependent noise which enables us to run shots over the scale of days or more despite the fact that noise and calibrations change in time. Finally, we discuss and demonstrate why our results suggest that gate calibration protocols should be revised when using QEM. We demonstrate our findings in the IBM quantum computers and through numerical simulations.https://doi.org/10.1038/s41534-023-00785-7 |
spellingShingle | Ivan Henao Jader P. Santos Raam Uzdin Adaptive quantum error mitigation using pulse-based inverse evolutions npj Quantum Information |
title | Adaptive quantum error mitigation using pulse-based inverse evolutions |
title_full | Adaptive quantum error mitigation using pulse-based inverse evolutions |
title_fullStr | Adaptive quantum error mitigation using pulse-based inverse evolutions |
title_full_unstemmed | Adaptive quantum error mitigation using pulse-based inverse evolutions |
title_short | Adaptive quantum error mitigation using pulse-based inverse evolutions |
title_sort | adaptive quantum error mitigation using pulse based inverse evolutions |
url | https://doi.org/10.1038/s41534-023-00785-7 |
work_keys_str_mv | AT ivanhenao adaptivequantumerrormitigationusingpulsebasedinverseevolutions AT jaderpsantos adaptivequantumerrormitigationusingpulsebasedinverseevolutions AT raamuzdin adaptivequantumerrormitigationusingpulsebasedinverseevolutions |