huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data

Summary: Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene...

Descrición completa

Detalles Bibliográficos
Main Authors: Anna C. Aschenbrenner, Lorenzo Bonaguro
Formato: Artigo
Idioma:English
Publicado: Elsevier 2023-06-01
Series:STAR Protocols
Subjects:
Acceso en liña:http://www.sciencedirect.com/science/article/pii/S266616672300151X
_version_ 1827979753043263488
author Anna C. Aschenbrenner
Lorenzo Bonaguro
author_facet Anna C. Aschenbrenner
Lorenzo Bonaguro
author_sort Anna C. Aschenbrenner
collection DOAJ
description Summary: Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data.For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
first_indexed 2024-04-09T21:41:43Z
format Article
id doaj.art-ddcfa63d85b44de1ad00b8e62e6f1390
institution Directory Open Access Journal
issn 2666-1667
language English
last_indexed 2024-04-09T21:41:43Z
publishDate 2023-06-01
publisher Elsevier
record_format Article
series STAR Protocols
spelling doaj.art-ddcfa63d85b44de1ad00b8e62e6f13902023-03-26T05:19:11ZengElsevierSTAR Protocols2666-16672023-06-0142102193huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics dataAnna C. Aschenbrenner0Lorenzo Bonaguro1Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, GermanySystems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany; Corresponding authorSummary: Variance of gene expression is intrinsic to any given natural population. Here, we present a protocol to analyze this variance using a conditional quasi loss- and gain-of-function approach. The huva (human variation) package takes advantage of population-scale multi-omics data to infer gene function and the relationship between phenotype and gene expression. We describe the steps for setting up the huva workspace, formatting datasets, performing huva experiments, and exporting data.For complete details on the use and execution of this protocol, please refer to Bonaguro et al. (2022).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.http://www.sciencedirect.com/science/article/pii/S266616672300151XBioinformaticsRNAseqImmunologyGene ExpressionSystems Biology
spellingShingle Anna C. Aschenbrenner
Lorenzo Bonaguro
huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
STAR Protocols
Bioinformatics
RNAseq
Immunology
Gene Expression
Systems Biology
title huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_full huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_fullStr huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_full_unstemmed huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_short huva: A human variation analysis framework to predict gene perturbation from population-scale multi-omics data
title_sort huva a human variation analysis framework to predict gene perturbation from population scale multi omics data
topic Bioinformatics
RNAseq
Immunology
Gene Expression
Systems Biology
url http://www.sciencedirect.com/science/article/pii/S266616672300151X
work_keys_str_mv AT annacaschenbrenner huvaahumanvariationanalysisframeworktopredictgeneperturbationfrompopulationscalemultiomicsdata
AT lorenzobonaguro huvaahumanvariationanalysisframeworktopredictgeneperturbationfrompopulationscalemultiomicsdata