Redox-Based Strategies against Infections by Eukaryotic Pathogens

Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory r...

Full description

Bibliographic Details
Main Authors: Cindy Vallières, Marie-Pierre Golinelli-Cohen, Olivier Guittet, Michel Lepoivre, Meng-Er Huang, Laurence Vernis
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/4/778
Description
Summary:Redox homeostasis is an equilibrium between reducing and oxidizing reactions within cells. It is an essential, dynamic process, which allows proper cellular reactions and regulates biological responses. Unbalanced redox homeostasis is the hallmark of many diseases, including cancer or inflammatory responses, and can eventually lead to cell death. Specifically, disrupting redox balance, essentially by increasing pro-oxidative molecules and favouring hyperoxidation, is a smart strategy to eliminate cells and has been used for cancer treatment, for example. Selectivity between cancer and normal cells thus appears crucial to avoid toxicity as much as possible. Redox-based approaches are also employed in the case of infectious diseases to tackle the pathogens specifically, with limited impacts on host cells. In this review, we focus on recent advances in redox-based strategies to fight eukaryotic pathogens, especially fungi and eukaryotic parasites. We report molecules recently described for causing or being associated with compromising redox homeostasis in pathogens and discuss therapeutic possibilities.
ISSN:2073-4425