Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging

Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimi...

Full description

Bibliographic Details
Main Authors: Francesco Grussu, Stefano B. Blumberg, Marco Battiston, Lebina S. Kakkar, Hongxiang Lin, Andrada Ianuş, Torben Schneider, Saurabh Singh, Roger Bourne, Shonit Punwani, David Atkinson, Claudia A. M. Gandini Wheeler-Kingshott, Eleftheria Panagiotaki, Thomy Mertzanidou, Daniel C. Alexander
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-11-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2021.752208/full
_version_ 1818984143786082304
author Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
author_facet Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
author_sort Francesco Grussu
collection DOAJ
description Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design.
first_indexed 2024-12-20T18:14:19Z
format Article
id doaj.art-dde3530e76cb45218a05c5fe9fae8da8
institution Directory Open Access Journal
issn 2296-424X
language English
last_indexed 2024-12-20T18:14:19Z
publishDate 2021-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physics
spelling doaj.art-dde3530e76cb45218a05c5fe9fae8da82022-12-21T19:30:24ZengFrontiers Media S.A.Frontiers in Physics2296-424X2021-11-01910.3389/fphy.2021.752208752208Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation ImagingFrancesco Grussu0Francesco Grussu1Francesco Grussu2Stefano B. Blumberg3Marco Battiston4Lebina S. Kakkar5Hongxiang Lin6Andrada Ianuş7Torben Schneider8Torben Schneider9Saurabh Singh10Roger Bourne11Shonit Punwani12David Atkinson13Claudia A. M. Gandini Wheeler-Kingshott14Claudia A. M. Gandini Wheeler-Kingshott15Claudia A. M. Gandini Wheeler-Kingshott16Eleftheria Panagiotaki17Thomy Mertzanidou18Daniel C. Alexander19Queen Square MS Centre, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United KingdomCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomRadiomics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Barcelona Hospital Campus, Barcelona, SpainCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomQueen Square MS Centre, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United KingdomCentre for Medical Imaging, University College London, London, United KingdomCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomChampalimaud Research, Champalimaud Centre for the Unknown, Lisbon, PortugalPhilips United Kingdom, Guildford, United KingdomDeep Spin, Berlin, GermanyCentre for Medical Imaging, University College London, London, United KingdomDiscipline of Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, AustraliaCentre for Medical Imaging, University College London, London, United KingdomCentre for Medical Imaging, University College London, London, United KingdomQueen Square MS Centre, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United KingdomDepartment of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy0Brain MRI 3T Center, IRCCS Mondino Foundation, Pavia, ItalyCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomCentre for Medical Image Computing, Department of Computer Science, University College London, London, United KingdomPurpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design.https://www.frontiersin.org/articles/10.3389/fphy.2021.752208/fullquantitative MRI (qMRI)protocol designartificial neural network (ANN)diffusion-relaxationbrainprostate
spellingShingle Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
Frontiers in Physics
quantitative MRI (qMRI)
protocol design
artificial neural network (ANN)
diffusion-relaxation
brain
prostate
title Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_full Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_fullStr Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_full_unstemmed Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_short Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_sort feasibility of data driven model free quantitative mri protocol design application to brain and prostate diffusion relaxation imaging
topic quantitative MRI (qMRI)
protocol design
artificial neural network (ANN)
diffusion-relaxation
brain
prostate
url https://www.frontiersin.org/articles/10.3389/fphy.2021.752208/full
work_keys_str_mv AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT stefanobblumberg feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT marcobattiston feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT lebinaskakkar feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT hongxianglin feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT andradaianus feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT torbenschneider feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT torbenschneider feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT saurabhsingh feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT rogerbourne feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT shonitpunwani feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT davidatkinson feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT eleftheriapanagiotaki feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT thomymertzanidou feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT danielcalexander feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging