Asymmetric integral barrier function-based tracking control of constrained robots

In this paper, a new-type time-varying asymmetric integral barrier function is designed to handle the state constraint of nonlinear systems. The barrier Lyapunov function is developed by building an integral upper limit function with respect to transformation errors over an open set to cope with the...

Full description

Bibliographic Details
Main Authors: Tan Zhang, Pianpian Yan
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024019?viewType=HTML
Description
Summary:In this paper, a new-type time-varying asymmetric integral barrier function is designed to handle the state constraint of nonlinear systems. The barrier Lyapunov function is developed by building an integral upper limit function with respect to transformation errors over an open set to cope with the position constraint of the robotic system. We know that the symmetric time-invariant constraint is only a particular situation of the asymmetric time-variant constraint, and thus compared to existing methods, it is capable of handling more general and broad practical engineering issues. We show that under the integral barrier Lyapunov function combining a disturbance observer-based tracking controller, the position vector tracks a desired trajectory successfully, while the constraint boundary is never violated. It can certify the exponential asymptotic stability of the robotic tracking system by using the given inequality relationship on barrier function and Lyapunov analysis. Finally, the feasibility of the presented algorithm is indicated by completing the simulations.
ISSN:2473-6988