Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta)
Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a rang...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2020-03-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/8623.pdf |
_version_ | 1797419669997486080 |
---|---|
author | Wei-Jiun Lin Han-Chen Ho Sheng-Chang Chu Jui-Yu Chou |
author_facet | Wei-Jiun Lin Han-Chen Ho Sheng-Chang Chu Jui-Yu Chou |
author_sort | Wei-Jiun Lin |
collection | DOAJ |
description | Green microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology. |
first_indexed | 2024-03-09T06:50:39Z |
format | Article |
id | doaj.art-ddeb590b7d964acc9a43247a5dc67e56 |
institution | Directory Open Access Journal |
issn | 2167-8359 |
language | English |
last_indexed | 2024-03-09T06:50:39Z |
publishDate | 2020-03-01 |
publisher | PeerJ Inc. |
record_format | Article |
series | PeerJ |
spelling | doaj.art-ddeb590b7d964acc9a43247a5dc67e562023-12-03T10:28:04ZengPeerJ Inc.PeerJ2167-83592020-03-018e862310.7717/peerj.8623Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta)Wei-Jiun Lin0Han-Chen Ho1Sheng-Chang Chu2Jui-Yu Chou3Department of Biology, National Changhua University of Education, Changhua, TaiwanDepartment of Anatomy, Tzu Chi University, Hualien, TaiwanDepartment of Biology, National Changhua University of Education, Changhua, TaiwanDepartment of Biology, National Changhua University of Education, Changhua, TaiwanGreen microalgae of the genus Desmodesmus are characterized by a high degree of phenotypic plasticity (i.e. colony morphology), allowing them to be truly cosmopolitan and withstand environmental fluctuations. This flexibility enables Desmodesmus to produce a phenotype–environment match across a range of environments broader compared to algae with more fixed phenotypes. Indoles and their derivatives are a well-known crucial class of heterocyclic compounds and are widespread in different species of plants, animals, and microorganisms. Indole-3-acetic acid (IAA) is the most common, naturally occurring plant hormone of the auxin class. IAA may behave as a signaling molecule in microorganisms, and the physiological cues of IAA may also trigger phenotypic plasticity responses in Desmodesmus. In this study, we demonstrated that the changes in colonial morphs (cells per coenobium) of five species of the green alga Desmodesmus were specific to IAA but not to the chemically more stable synthetic auxins, naphthalene-1-acetic acid and 2,4-dichlorophenoxyacetic acid. Moreover, inhibitors of auxin biosynthesis and polar auxin transport inhibited cell division. Notably, different algal species (even different intraspecific strains) exhibited phenotypic plasticity different to that correlated to IAA. Thus, the plasticity involving individual-level heterogeneity in morphological characteristics may be crucial for microalgae to adapt to changing or novel conditions, and IAA treatment potentially increases the tolerance of Desmodesmus algae to several stress conditions. In summary, our results provide circumstantial evidence for the hypothesized role of IAA as a diffusible signal in the communication between the microalga and microorganisms. This information is crucial for elucidation of the role of plant hormones in plankton ecology.https://peerj.com/articles/8623.pdfCoenobial algaeDesmodesmusIndole derivativesMicroalgaePhenotypic plasticity |
spellingShingle | Wei-Jiun Lin Han-Chen Ho Sheng-Chang Chu Jui-Yu Chou Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) PeerJ Coenobial algae Desmodesmus Indole derivatives Microalgae Phenotypic plasticity |
title | Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) |
title_full | Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) |
title_fullStr | Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) |
title_full_unstemmed | Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) |
title_short | Effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga Desmodesmus (Chlorophyceae, Chlorophyta) |
title_sort | effects of auxin derivatives on phenotypic plasticity and stress tolerance in five species of the green alga desmodesmus chlorophyceae chlorophyta |
topic | Coenobial algae Desmodesmus Indole derivatives Microalgae Phenotypic plasticity |
url | https://peerj.com/articles/8623.pdf |
work_keys_str_mv | AT weijiunlin effectsofauxinderivativesonphenotypicplasticityandstresstoleranceinfivespeciesofthegreenalgadesmodesmuschlorophyceaechlorophyta AT hanchenho effectsofauxinderivativesonphenotypicplasticityandstresstoleranceinfivespeciesofthegreenalgadesmodesmuschlorophyceaechlorophyta AT shengchangchu effectsofauxinderivativesonphenotypicplasticityandstresstoleranceinfivespeciesofthegreenalgadesmodesmuschlorophyceaechlorophyta AT juiyuchou effectsofauxinderivativesonphenotypicplasticityandstresstoleranceinfivespeciesofthegreenalgadesmodesmuschlorophyceaechlorophyta |