Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes
We examined (peak-to-background flux ratio <i>p/b</i> > 20) energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km). Our statistical analysis of measurements during two 6-month periods suggests th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2011-07-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | http://www.nat-hazards-earth-syst-sci.net/11/1901/2011/nhess-11-1901-2011.pdf |
_version_ | 1819032552726331392 |
---|---|
author | N. F. Sidiropoulos G. Anagnostopoulos V. Rigas |
author_facet | N. F. Sidiropoulos G. Anagnostopoulos V. Rigas |
author_sort | N. F. Sidiropoulos |
collection | DOAJ |
description | We examined (peak-to-background flux ratio <i>p/b</i> > 20) energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km). Our statistical analysis of measurements during two 6-month periods suggests that: (a) the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b) the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008), (c) VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d) daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d) seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research. |
first_indexed | 2024-12-21T07:03:46Z |
format | Article |
id | doaj.art-ddf25495edba4dd5b42cdd30684333ff |
institution | Directory Open Access Journal |
issn | 1561-8633 1684-9981 |
language | English |
last_indexed | 2024-12-21T07:03:46Z |
publishDate | 2011-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Natural Hazards and Earth System Sciences |
spelling | doaj.art-ddf25495edba4dd5b42cdd30684333ff2022-12-21T19:12:09ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812011-07-011171901191310.5194/nhess-11-1901-2011Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudesN. F. SidiropoulosG. AnagnostopoulosV. RigasWe examined (peak-to-background flux ratio <i>p/b</i> > 20) energetic electron bursts in the presence of VLF activity, as observed from the DEMETER satellite at low altitudes (~700 km). Our statistical analysis of measurements during two 6-month periods suggests that: (a) the powerful transmitter NWC causes the strongest effects on the inner radiation belts in comparison with other ground-based VLF transmitters, (b) the NWC transmitter was responsible for only ~1.5 % of total electron bursts examined during the 6-month period (1 July 2008 to 31 December 2008), (c) VLF transmitter-related electron bursts are accompanied by the presence of a narrow band emission centered at the radiating frequency emission, whereas the earthquake-related electron bursts are accompanied by the presence of broadband emissions from a few kHz to >20 KHz, (d) daytime events are less preferable than nighttime events, but this asymmetry was found to be less evident when the powerful transmitter NWC was turned off and (d) seismic activity most probably dominated the electromagnetic interactions producing the electron precipitation at middle latitudes. The results of this study support the proposal that the detection of radiation belt electron precipitation, besides other kinds of studies, is a useful tool for earthquake prediction research.http://www.nat-hazards-earth-syst-sci.net/11/1901/2011/nhess-11-1901-2011.pdf |
spellingShingle | N. F. Sidiropoulos G. Anagnostopoulos V. Rigas Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes Natural Hazards and Earth System Sciences |
title | Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
title_full | Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
title_fullStr | Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
title_full_unstemmed | Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
title_short | Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
title_sort | comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes |
url | http://www.nat-hazards-earth-syst-sci.net/11/1901/2011/nhess-11-1901-2011.pdf |
work_keys_str_mv | AT nfsidiropoulos comparativestudyonearthquakeandgroundbasedtransmitterinducedradiationbeltelectronprecipitationatmiddlelatitudes AT ganagnostopoulos comparativestudyonearthquakeandgroundbasedtransmitterinducedradiationbeltelectronprecipitationatmiddlelatitudes AT vrigas comparativestudyonearthquakeandgroundbasedtransmitterinducedradiationbeltelectronprecipitationatmiddlelatitudes |