Existence and uniqueness of mild and classical solutions of impulsive evolution equations

We consider the non-linear impulsive evolution equation $$displaylines{ u'(t)=Au(t)+f(t,u(t),Tu(t),Su(t)), quad 0<t<T_0, ; t eq t_i,cr u(0) =u_0,cr Delta u(t_i) =I_i(u(t_i)),quad i=1,2,3,dots,p. }$$ in a Banach space $ X$, where $ A $ is the infinitesimal generator of a $C_0 $ semigroup....

Full description

Bibliographic Details
Main Authors: Annamalai Anguraj, Mani Mallika Arjunan
Format: Article
Language:English
Published: Texas State University 2005-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2005/111/abstr.html
_version_ 1818958906262552576
author Annamalai Anguraj
Mani Mallika Arjunan
author_facet Annamalai Anguraj
Mani Mallika Arjunan
author_sort Annamalai Anguraj
collection DOAJ
description We consider the non-linear impulsive evolution equation $$displaylines{ u'(t)=Au(t)+f(t,u(t),Tu(t),Su(t)), quad 0<t<T_0, ; t eq t_i,cr u(0) =u_0,cr Delta u(t_i) =I_i(u(t_i)),quad i=1,2,3,dots,p. }$$ in a Banach space $ X$, where $ A $ is the infinitesimal generator of a $C_0 $ semigroup. We study the existence and uniqueness of the mild solutions of the evolution equation by using semigroup theory and then show that the mild solutions give rise to a classical solutions.
first_indexed 2024-12-20T11:33:11Z
format Article
id doaj.art-ddfe5ed32c5c46fbb340883c84e14dcf
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-20T11:33:11Z
publishDate 2005-10-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-ddfe5ed32c5c46fbb340883c84e14dcf2022-12-21T19:42:13ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912005-10-01200511118Existence and uniqueness of mild and classical solutions of impulsive evolution equationsAnnamalai AngurajMani Mallika ArjunanWe consider the non-linear impulsive evolution equation $$displaylines{ u'(t)=Au(t)+f(t,u(t),Tu(t),Su(t)), quad 0<t<T_0, ; t eq t_i,cr u(0) =u_0,cr Delta u(t_i) =I_i(u(t_i)),quad i=1,2,3,dots,p. }$$ in a Banach space $ X$, where $ A $ is the infinitesimal generator of a $C_0 $ semigroup. We study the existence and uniqueness of the mild solutions of the evolution equation by using semigroup theory and then show that the mild solutions give rise to a classical solutions.http://ejde.math.txstate.edu/Volumes/2005/111/abstr.htmlSemigroupsevolution equationsimpulsive conditions.
spellingShingle Annamalai Anguraj
Mani Mallika Arjunan
Existence and uniqueness of mild and classical solutions of impulsive evolution equations
Electronic Journal of Differential Equations
Semigroups
evolution equations
impulsive conditions.
title Existence and uniqueness of mild and classical solutions of impulsive evolution equations
title_full Existence and uniqueness of mild and classical solutions of impulsive evolution equations
title_fullStr Existence and uniqueness of mild and classical solutions of impulsive evolution equations
title_full_unstemmed Existence and uniqueness of mild and classical solutions of impulsive evolution equations
title_short Existence and uniqueness of mild and classical solutions of impulsive evolution equations
title_sort existence and uniqueness of mild and classical solutions of impulsive evolution equations
topic Semigroups
evolution equations
impulsive conditions.
url http://ejde.math.txstate.edu/Volumes/2005/111/abstr.html
work_keys_str_mv AT annamalaianguraj existenceanduniquenessofmildandclassicalsolutionsofimpulsiveevolutionequations
AT manimallikaarjunan existenceanduniquenessofmildandclassicalsolutionsofimpulsiveevolutionequations