The Quantum Nature of Lorentz Invariance

If the reality underlying classical physics is quantum in nature, then it is reasonable to assume that the transformations of fields, currents, energy, and momentum observed macroscopically are the result of averaging of symmetry groups acting in the Hilbert space of quantum states of elementary con...

Full description

Bibliographic Details
Main Author: Richard Kerner
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/5/1/1
_version_ 1811297650309332992
author Richard Kerner
author_facet Richard Kerner
author_sort Richard Kerner
collection DOAJ
description If the reality underlying classical physics is quantum in nature, then it is reasonable to assume that the transformations of fields, currents, energy, and momentum observed macroscopically are the result of averaging of symmetry groups acting in the Hilbert space of quantum states of elementary constituents of which classical material bodies are formed. We show how Pauli&#8217;s exclusion principle based on the discrete <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> symmetry group generates the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="bold">C</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> symmetry of the space of states of an electron endowed with spin. Then, we generalize this reasoning in the case of quark colors and the corresponding <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mn>3</mn> </msub> </semantics> </math> </inline-formula> symmetry. A ternary generalization of Dirac&#8217;s equation is proposed, leading to self-confined quarks states. It is shown how certain cubic or quadratic combinations can form freely-propagating entangled states. The entire symmetry of the standard model, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#215;</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#215;</mo> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, is naturally derived, as well.
first_indexed 2024-04-13T06:08:18Z
format Article
id doaj.art-de1b320054544448bdc52a5819f1807d
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-04-13T06:08:18Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-de1b320054544448bdc52a5819f1807d2022-12-22T02:59:11ZengMDPI AGUniverse2218-19972018-12-0151110.3390/universe5010001universe5010001The Quantum Nature of Lorentz InvarianceRichard Kerner0Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne-Université, 4 Place Jussieu, 75005 Paris, FranceIf the reality underlying classical physics is quantum in nature, then it is reasonable to assume that the transformations of fields, currents, energy, and momentum observed macroscopically are the result of averaging of symmetry groups acting in the Hilbert space of quantum states of elementary constituents of which classical material bodies are formed. We show how Pauli&#8217;s exclusion principle based on the discrete <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> symmetry group generates the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mi mathvariant="bold">C</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> symmetry of the space of states of an electron endowed with spin. Then, we generalize this reasoning in the case of quark colors and the corresponding <inline-formula> <math display="inline"> <semantics> <msub> <mi>Z</mi> <mn>3</mn> </msub> </semantics> </math> </inline-formula> symmetry. A ternary generalization of Dirac&#8217;s equation is proposed, leading to self-confined quarks states. It is shown how certain cubic or quadratic combinations can form freely-propagating entangled states. The entire symmetry of the standard model, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#215;</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#215;</mo> <mi>S</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, is naturally derived, as well.https://www.mdpi.com/2218-1997/5/1/1quark modelZ3-graded algebrascolor dynamicsDirac’s equationLoretnz invariance
spellingShingle Richard Kerner
The Quantum Nature of Lorentz Invariance
Universe
quark model
Z3-graded algebras
color dynamics
Dirac’s equation
Loretnz invariance
title The Quantum Nature of Lorentz Invariance
title_full The Quantum Nature of Lorentz Invariance
title_fullStr The Quantum Nature of Lorentz Invariance
title_full_unstemmed The Quantum Nature of Lorentz Invariance
title_short The Quantum Nature of Lorentz Invariance
title_sort quantum nature of lorentz invariance
topic quark model
Z3-graded algebras
color dynamics
Dirac’s equation
Loretnz invariance
url https://www.mdpi.com/2218-1997/5/1/1
work_keys_str_mv AT richardkerner thequantumnatureoflorentzinvariance
AT richardkerner quantumnatureoflorentzinvariance