Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues

In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness...

Full description

Bibliographic Details
Main Authors: Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad
Format: Article
Language:English
Published: AIMS Press 2022-08-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2022539?viewType=HTML
Description
Summary:In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order α and fractal-dimension ℘ have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.
ISSN:1551-0018