On the Optimal Tradeoff Between Computational Efficiency and Generalizability of Oja’s Algorithm

The Oja's algorithm is widely applied for computing principal eigenvectors in real problems, and it is practically useful to understand the theoretical relationships between the learning rate, convergence rate, and generalization error of this algorithm for noisy samples. In this paper, we show...

ver descrição completa

Detalhes bibliográficos
Principais autores: Xiangxiang Xu, Shao-Lun Huang
Formato: Artigo
Idioma:English
Publicado em: IEEE 2020-01-01
coleção:IEEE Access
Assuntos:
Acesso em linha:https://ieeexplore.ieee.org/document/9104701/