Summary: | WC/Y–TZP–Al<sub>2</sub>O<sub>3</sub> hybrid ceramic–matrix composites (CMCs) with dispersed Hadfield steel particles were sintered and then tested at sliding speeds in the range of 7–37 m/s and contact pressure 5 MPa. Fast and low-temperature sinter-forging allowed obtaining micron-sized WC grains, submicron-sized alumina-reinforced yttria partially stabilized polycrystalline tetragonal zirconia (Y–TZP–Al<sub>2</sub>O<sub>3</sub>), and evenly distributed Hadfield steel grains. Such a microstructure provided new hybrid characteristics combining high hardness with high fracture toughness and tribological adaptation. The CMCs demonstrated low friction and high wear resistance that were better than those demonstrated by other composite materials such as, for example, MAX-phase composites, zirconia-base ceramics, ZrB<sub>2</sub>-SiC ceramics, and metal matrix WC–(Fe–Mn–C) composites. These good tribological characteristics were obtained due to the in situ mechanochemical formation of iron tungstates FeWO<sub>4</sub> and Fe<sub>2</sub>WO<sub>6</sub> on the worn surfaces of composite samples. These mixed oxides were included in multilayer subsurface structures that provided the self-lubricating and self-healing effects in high-speed sliding because of their easy shear and quasi-viscous behavior.
|