Summary: | The capability to estimate the pose of known geometry from point cloud data is a frequently arising requirement in robotics and automation applications. This problem is directly addressed by Iterative Closest Point (ICP), however, this method has several limitations and lacks robustness. This paper makes the case for an alternative method that seeks to find the most likely solution based on available evidence. Specifically, an evidence-based metric is described that seeks to find the pose of the object that would maximise the conditional likelihood of reproducing the observed range measurements. A seedless search heuristic is also provided to find the most likely pose estimate in light of these measurements. The method is demonstrated to provide for pose estimation (2D and 3D shape poses as well as joint-space searches), object identification/classification, and platform localisation. Furthermore, the method is shown to be robust in cluttered or non-segmented point cloud data as well as being robust to measurement uncertainty and extrinsic sensor calibration.
|